
Expressing Aspectual Interactions in Requirements
Engineering

Experiences in the Slot Machine Domain

Arturo Zambrano
LIFIA, Facultad de Informática,

Universidad Nacional de La
Plata

50 y 115 1er Piso
La Plata, Argentina

arturo@lifia.info.unlp.edu.ar

Johan Fabry
PLEIAD laboratory, Computer
Science Department (DCC),

University of Chile
Blanco Encalada 2120,

Santiago, Chile
jfabry@dcc.uchile.cl

Guillermo Jacobson
LIFIA, Facultad de Informática,

Universidad Nacional de La
Plata

50 y 115 1er Piso
La Plata, Argentina

gaj@lifia.info.unlp.edu.ar

Silvia Gordillo
LIFIA, Facultad de Informática,

Universidad Nacional de La
Plata

CIC Pcia. Buenos Aires
50 y 115 1er Piso

La Plata, Argentina
gordillo@lifia.info.unlp.edu.ar

ABSTRACT
Aspect Oriented Requirements Engineering (AORE) pro-
vides support for modularizing crosscutting requirements.
In the context of an industrial project in the domain of Slot
Machines we needed to perform AORE, with a special em-
phasis on dependencies and interactions among concerns.
We were however unable to find any report of large-scale in-
dustrial applications of AORE approaches that treat depen-
dencies and interactions. We therefore evaluated two AORE
approaches: Theme/Doc and MDSOCRE, to establish their
applicability in our setting. In this paper we report on our
experience, showing successful uses of both approaches as
well as where they fall short. We furthermore propose pos-
sible enhancements for both approaches, to address these
limitations.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements / Specifica-
tions—Methodologies, Tools

Keywords
aspect oriented requirement engineering, aspect dependen-
cies and interactions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

1. INTRODUCTION
Aspect-Oriented Requirements Engineering (AORE) ad-

dresses the requirements engineering problem that some re-
quirements are hard, if not impossible, to isolate into sepa-
rate modules. Also known as Early Aspects, AORE per-
forms first-class modelling of these crosscutting concerns
as aspects, identifying and characterising their influence on
other requirements in the system [15, 17]. These models en-
able to better identify and manage requirements conflicts,
irrespective of the crosscutting nature of the requirement.
Ideally, the result of this phase is to have a consistent model
of the system early in the software development life-cycle.

In the context of an industrial project we are currently
re-implementing the software that runs on the casino gam-
bling device best known as a slot machine. Our previous
experience with this software has taught us that there is a
significant amount of crosscutting concerns in these applica-
tions. Furthermore these concerns depend on and interact
with each other as well as with the modularised concerns.
We therefore have opted to use Aspect-Oriented Software
Development in this implementation, taking special care of
dependencies and interactions between the different aspects
and modules.

Being aware of the critical importance of interactions in
this domain, we have focused early in the development cy-
cle on interaction modeling. The objective of this step is
documenting as many interactions as possible so that this
information can be used later in the design and implemen-
tation phases. The result of the modeling process should
be a consistent model of the requirements. To accomplish
this objective, it is necessary to be able to rely on expres-
sive mechanisms in the selected modeling techniques for this
phase.

To the best of our knowledge there are however no pub-

2161

lications detailing experiences with AORE approaches and
their interaction support in a large-scale industrial case. We
therefore opted to perform an in-depth study of two ap-
proaches to evaluate their applicability in the slot machine
domain. This paper presents our results.

Applying existing aspect oriented software engineering
tools and approaches to real world cases is necessary to bring
maturity to them and finally gain the acceptance of the rest
of the software engineering community. We believe this pa-
per contributes to this field.

We elected to perform requirements engineering using
both the Theme/Doc approach [3] and Multidimensional
Separation of Concerns for Requirements Engineering (MD-
SOCRE) [15], focusing on how these allow us to express
and document aspectual dependencies and interactions. The
choice of these two approaches was mainly based on our
perception of their maturity and of their acceptance in the
AORE community, the latter as reflected by publication
record. Due to lack of time, we were unable to perform the
same experiment on other approaches such as AORA [6],
AOSD/UC [14], or AOREC [13].

Both of the approaches we evaluated enable us to express
the requirements, but neither of them was entirely satisfac-
tory. Theme/Doc lacks support for the kind of interactions
we want to model – e.g. conflicts between aspects – and
needs a finer granularity for expressing crosscutting rela-
tionships. MDSOCRE lacks explicit support for expressing
interactions between concerns when they do not cross-cut
each other. In addition to describing these drawbacks in
more details, we also provide suggestions on how they may
be addressed in these tools, for example adding new kind of
relationships to Theme/Doc for documenting interactions,
or adding new meta-information about concerns for MD-
SOCRE. We hope that this experience report is of use to
the AORE community, indicating possible enhancements of
the tools and methodologies. This experience is also useful
for those who want to perform AORE in domains where in-
teractions are present, to know which support they will get
from the evaluated tools.

This paper is organised as follows: Sect. 2 is a brief in-
troduction to the slot machine domain and the specificity
of requirements in this domain. In Sect. 3 we present our
decomposition of the application in different concerns, along
with a textual description of requirements and interactions.
Our first modelling effort is described in Sect. 4 that presents
our results using Theme/Doc. Section 5 repeats the experi-
ment, using MDSOCRE. We present related work in Sect. 6
and Sect. 7 concludes.

2. SLOT MACHINE DOMAIN
A slot machine (SM for short) is a gambling device. It has

five reels which spin when a play button is pressed. An SM
includes some means for entering money, which is mapped
to credits. The player bets an amount of credits on each
play, the SM randomly selects the displayed symbol for each
reel, and pays the corresponding prize, if any. Credits can
be extracted (called cashout) by different mechanisms such
as coins, tickets or electronic transfers.

The SM game concept is developed by the game designers
and its implementation must obey a set of regulations that
control both hardware and software. As a game concept
can vary from SM to SM, in this paper we only focus on
the legal regulations, and we furthermore restrict ourselves

to regulations for software. These can be divided in three
main groups:

Government Regulations: Government regulations
cover a broad spectrum of characteristics of gambling de-
vices: payout, randomness, connectivity, shared prizes, etc.
One example of these are the Nevada Regulations [16].

Standards: To ensure proper behaviour of SMs, there
are certification institutes that perform severals tests and
quality checks on the SMs. The expected behaviour of an
SM is defined in documents called standards, for example
the GLI standard [11].

Technical Specifications: Some requirements are re-
lated to the SM’s connectivity with reporting systems (RS)
and the underlying communication protocol. This is the
case, for example, of the G2S [12] (Game to Server) pro-
tocol, an open standard for communication of SM with a
backend.

Requirements for the SM domain, are therefore defined in
different documents (regulations, standards, protocol speci-
fications) written by different stakeholders, with diverse in-
terests and backgrounds. This results in a large set of doc-
uments using multiple terms for describing the same object,
action or event (we count approximately 150 pages of re-
quirement documents). Furthermore, in some cases it is
necessary to complement and normalise different sources re-
ferring to the same topic. For instance, consider the case of
Error Conditions, which are treated by both Nevada regula-
tions [16] and the GLI standard [11]; some of the conditions
specified by the regulations match, but others are defined by
just one of them.

Lastly, an important characteristic of communication pro-
tocol requirements (e.g. in G2S) is that they are divided in
topics and that not all the topics are required for certain
deployments. As a result, part of the communication func-
tionality is optional, which has an impact on requirements
modeling.

3. CONCERNS
In AORE, concerns refer to a coherent set of requirements

that allude to a property or feature that the system must
provide [7]. Based on our experience in the domain and
the set of legal requirements that apply, we organise the
requirements in the following concerns:

Game: This is the basic logic of a gambling device. The
user can enter credits into the machine, and then play. The
output is determined randomly and when the player wins,
he is awarded an amount of credits.

Metering: This refers to a set of counters that are used
to audit the activity of the game. For instance, there are
meters that count the number of plays, the total amount
bet, total won, error condition occurrences, etc.

Program Interruption and Resumption: Require-
ments in this concern determine how the machine should
behave after a power outage, specifying which data and state
need to be recovered.

Game Recall: This refers to the information that must
be available about the current and previous plays, in order
to solve any dispute with players.

Error Conditions: Under certain circumstances, the
game should detect error conditions and behave accordingly.
This concern defines what are considered error conditions
and how the game must react to them.

Communications: The SM is connected to a reporting

2162

system (RS) in the casino. This concern defines the kinds of
data, the format and when data must be exchanged between
the SM and RS. Several communication protocols exist, each
with their own specification that states what data needs to
be persistent, which meters are necessary, etc. Concretely,
we will either use G2S or a proprietary protocol, and there-
fore in the remainder of the text refer to the type of protocol
instead of to ‘communications’.

Demo: The demo concern contains the requirements spec-
ifying how the game behaves in this mode. Playing the game
in demo mode makes it is possible to test how hardware and
software works, simulating events such as entering money
or winning a prize1. Note that any meter or data changed
due to operation in demo mode should not be persisted or
reported, as it is simulated behaviour.

As the domain is complex, there may be other possible
concern decompositions. We choose this one because, based
on our experience, it properly modularises the different re-
quired features of slot machines and show the interactions
that are at the core of this evaluation.

We expect some of the selected concerns to become com-
ponents and others aspects. Different instantiations of the
SM software will include different components or aspects to
comply with the regulations of each scenario.

3.1 Selected Requirements
Due to the large number of requirements of our case, we

only show here a small subset of requirements that illustrates
3 important types of interactions discussed later: conflict,
dependency and reinforcement.

The Meters concern contains multiple requirements, some
examples are: “Meters shall at all times indicate all credits
or cash available for the player to wager or cashout”, “Meters
should be updated upon occurrence of any event that must
be counted, including: play, cashout, bill in, coin in, hand-
pay, etc.”, “Meters must count bills/tickets/coins inserted,
cashout amount, etc.”. In the case of Demo, we have as
the principal requirement: “Plays and other actions such as
cashout, handpays, etc. performed in this mode must not be
counted for audits”. For the Communication Protocol con-
cern we have: “Information regarding SM activity must be
sent to the RS”, “Meters reported by the protocol includes
number of plays, bills inserted by denomination, error con-
ditions, etc” as most important.

A more detailed list of the specific requirements of our
experiment, selected from the official requirements docu-
ments [11, 12, 16], is available from our web site:
http://pleiad.cl/research/adi.

3.2 Interactions
Aspectual interactions have been studied by several au-

thors. We based our investigation, and therefore this dis-
cussion on the AOSD-Europe technical report that gives an
overview on aspect interactions [20]. In this report, the au-
thors classify aspect interactions into dependency, conflict,
mutex and reinforcement. For example, in the SM domain,
there is a conflict between the Demo and Meters concerns,
since Meters works correctly without Demo, but if Demo
mode is active, activity in the machine must not be counted
by Meters. An example of mutex is in the communication
protocols: it is forbidden to have two protocols providing

1SMs are delivered to casinos without the demo feature in-
stalled, obviously.

the same functionality at the same time. A dependency ex-
ample is the relationship between Communications and Me-
ters; the protocol needs to communicate the status of the
SM, which is in part represented by the meters. Finally, a
reinforcement is a positive interaction, for instance between
Error Conditions and Communications. The existence of
error condition detection enables communication protocols
to provide “extra” functionality, in this case real time error
condition reporting.

Understanding how concerns interact with each other is
key information that needs to be passed to designers and
programmers. For example, in the case of a dependency the
dependent concern will be affected by design decisions on the
other. On the other hand, if there is a mutex relationship,
architectural mechanisms should be provided to ensure that
both aspects will not be active at the same time.

Figure 1: Concern interactions. Regular arrows in-
dicate crosscutting, dashed arrows indicate inter-
actions between concerns, tagged with UML-like
stereotypes.

Considering the concern division and the associated re-
quirements, we have deduced the relationships between dif-
ferent concerns and identified their interactions, as shown in
Fig. 1. More in details, the crosscutting relationships are
as follows:

1. Demo to Game: The demo requirements affect many
of the definitions of the original requirements of Game,
in order to alter the Game’s behaviour for testing pur-
poses.

2. Game Recall to Game: Game Recall requirements af-
fect many aspects of the Game’s behaviour, its require-
ments call for recording pieces of information regarding
game play.

3. Meters to Game: Meters count activities of many
functions defined in Game’s requirements, for instance:
game play, bill in, cashout, etc.

4. Program resumption to Game, Game Recall, G2S and
Meters: Program resumption is analogous to persis-
tence. It crosscuts all the places where important data,
which needs to be restored, is changed.

5. G2S to Game: this concern cut across many Game’s
requirements, since several events in Game need to be
reported, monitored and communicated to reporting
system.

6. Error Conditions to Game: The behaviour associated
to error conditions need to be woven into the game

2163

behaviour. Requirements in Game that could raise an
error condition vary: from a bill inserted to a door
opened.

7. Proprietary Protocol to Game: This refers to another
protocol used for the same purpose as G2S, that is to
monitor the game’s behaviour.

The different interactions are the following:

8. Conflict between Demo and Program Resumption: The
demo mode fires fake events that must not be counted
nor restored after program interruption.

9. Conflict between Demo and G2S : This means both
concerns cannot be active at the same time, because
demo fires fake events that must not be reported to
the RS.

10. Dependency of G2S and Prop. Protocol on Meters:
Some data reported to the RS is stored or can be de-
rived from meters. So, communication protocols needs
the meters to be up to date in order to accomplish its
purpose.

11. Reinforcement of G2S with Error Conditions: As we
mentioned in Sect. 2, some parts of the G2S proto-
col are not mandatory for specific instances. When
error conditions are tracked in the game, additional
behaviour is made available in G2S, such as real time
event reporting.

12. Mutex between G2S and Proprietary Protocol : There
is overlapping functionality defined in the requirements
of both protocols. For example, both of them are used
keep the time in sync between the SM and the RS.
Having both protocols active, with RSs out of sync,
would render the time of the SM inconsistent. There-
fore they cannot be active at the same time.

The interactions of these concerns need to be taken into
account at design time. Therefore this must be clearly re-
flected in the model resulting from the Requirements En-
gineering phase. We evaluated two AORE approaches to
establish whether they provide the necessary expressiveness
for our needs. In the next sections we discuss Theme/Doc [3]
and Multidimensional Separation of Concerns for Require-
ments Engineering [15], showing if and how they make it
possible to express and document aspectual interactions.

4. EVALUATION OF THEME/DOC
Theme/Doc is an AORE methodology that, apart from

being mature and accepted in the AORE community, is
part of a more comprehensive approach called Theme [3,
10], which also treats aspectual design (Theme/UML). We
selected Theme/Doc because it explicitly supports passing
information from requirements analysis, which could include
interactions, to the design phase.

4.1 Brief overview of Theme/Doc
Theme/Doc [2] is the requirement analysis part of the

Theme approach [3, 10]. In Theme/Doc, requirements are
organised into concerns, called themes. Themes can be de-
fined through an initial set of domain specific actions or con-
cepts, others may be recurring typical concerns: persistence,
logging, etc.

In Theme/Doc a requirement is attached to a theme if
the name of the theme appears in the requirement. In other
words, Theme/Doc relies on the name-based analysis of ac-
tions in requirements to relate them to themes. In our study
we did not strictly follow this rule. Instead we use the con-
cerns we identified in Sect. 3 as themes. We will detail our
motivation for this in Sect. 4.3.

Ideally, each requirement should belong to one theme, but
chances are that some of them are shared among themes,
i.e. crosscutting. In Theme/Doc, a shared requirement is
considered crosscutting if the following four conditions are
satisfied [10]:

1. The requirement cannot be split in order to avoid tan-
gling.

2. One of the themes dominates the requirement: it has a
stronger belonging relationship with one of the themes.

3. The dominant theme is triggered by events in the base
theme: the behaviour described by the crosscutting
theme is fired as a result of the execution of some be-
haviour from the base theme.

4. The triggered theme is externally fired in multiple sit-
uations: the crosscutting behaviour must be executed
in several cases, not just one.

Figure 2: Game, Meters, G2S and Error Conditions
concerns expressed using Theme/Doc notation.

An important feature of Theme/Doc is its visual sup-
port through diagrams. In Theme/Doc views, requirements
are represented by rounded boxes, and they are organised
around themes, which are depicted by diamonds. When a
crosscutting theme exists, a gray arrow is drawn from the
theme that crosscuts (i.e. the aspect) to the theme that
is being cut across (i.e. the base). Consider for example
Fig. 2, where Game, Meters, Error Conditions and G2S
concerns are represented along with their requirements and
crosscutting relationships.

4.2 Successful Uses of Theme/Doc
As shown in Fig. 2, the graphical approach of Theme/Doc

makes it easy to read the relationships between requirements
and themes. Each theme can be easily identified along with
its associated requirements. The four steps to check for
crosscutting helped us to confirm which are the crosscut-
ting concerns. In the resulting diagrams, the crosscutting
relationships are clear, enabling us to easily identify which
concern is playing the base and/or the aspectual role.

Figure 3 shows crosscutting among the themes presented
in Sect. 3.2. For clarity, we just present the crosscutting
relationships between the themes and without including the
requirements2.
2Diagrams showing all the above concerns with their more
significant requirements can be found on our website:
http://pleiad.cl/research/adi.

2164

Figure 3: Crosscutting relationships between
themes using Theme/Doc graphical notation.

For the application of the approach we followed the in-
structions from the published work [10, 3]. We needed to
generate some views manually as the Theme/Doc tool was
not available at the time that we performed our experiments.

4.3 Limitations of Theme/Doc
In our evaluation, we encountered the following limita-

tions of Theme/Doc.
Granularity: As explained before, gray arrows denote

crosscutting. As each concern potentially contains many
requirements, it is difficult to discern which specific require-
ment of the crosscutting theme affects which requirements
on the base theme. Consider for example Fig. 2 and the
crosscutting relationship between Meters and Game; here
it is not possible to know which requirement in Meters is
crosscutting. Furthermore, it is not possible to know which
specific requirements in Game are affected as the result of
the crosscutting. Where possible, it is desirable to pass that
information to the design phase, so that base and aspectual
components can be properly designed. In fact, this infor-
mation is available during the analysis phase –identification
of crosscutting themes– of Theme/Doc, but it is not made
explicit.

Expressing Interactions: In Fig. 1 we show different
examples of interactions between aspectual concerns for re-
quirements. If we consider Fig. 2 we can however see that
the interactions explained in Sect. 3.2 are missing. This is
because Theme/Doc lacks support for expressing interac-
tions. For instance, missing in Fig. 2 is a dependency of
G2S on Meters. This information is however crucial: Mul-
tiple perspectives of a system (themes in this case) need
to be combined to form a system [21]. We require the de-
pendency information to select a sound set of themes for
a system. For example, it is not possible to build an SM
with G2S support but lacking Meters. This is because G2S
requires the existence of Meters to provide its own func-
tionality. The same happens with conflicts, for instance,
between Demo and Meters. It is critical to know that archi-
tectural or design mechanisms need to be included to avoid
the activation of both concerns at the same time. Develop-
ing the system without this information would entail costly
fixes in the future, when the interaction is encountered. The
reinforcement from Error Conditions to G2S is also missing.
Documenting it signals that an optional part of G2S is active
when Error Conditions are available.

Adaptability to our case study requirements: A
useful requirements specification must be complete, unam-
biguous, verifiable, consistent, modifiable and traceable [1].
Under these assumptions Theme/Doc should work smoothly.
Unfortunately, in our particular case there is no single re-
quirements specification unifying all the sources and we are

faced with significant ambiguity. The variety of sources re-
sults not only in synonyms being used in different docu-
ments. There are complete key ideas, concepts or interac-
tions that are expressed using different vocabulary and style.
Although we might consider our case as being exceptional, it
is worthwhile to examine the impact this has on Theme/Doc.

The ambiguity we face affects the mechanism proposed in
Theme/Doc to assign requirements to themes, and to iden-
tify potential crosscutting themes. For example, consider
the case of attaching requirements to themes, where it is
necessary to look for a theme’s name in the requirements.
In our case, sometimes the theme’s name is represented by a
phrase or an adjective, which gives the analyst an indication
to attach it to the theme. In the worst case the requirement
and the theme could be related by implied actions: actions
that are activated as a consequence of other actions [5]. The
same happens when crosscutting relationships are identified.
According to Theme/Doc, shared requirements are poten-
tial indicators of crosscutting. Having a shared requirement
means that two concerns are present in the text [10]. This
suffers from the same drawback of requiring unambiguity.

Baniassad and Clarke [3] have shown how Theme/Doc
analysis of actions helps to solve some ambiguities and how
a synonym dictionary helps in the case of multiple terms
referring to the same concept. In our experience, the prob-
lem goes deeper than the use of synonyms: we not only
have some words that are written in different way, some-
times ideas are equivalent but explained differently.

Considering the kind of requirements we face, we consider
two options to resolve ambiguities. The first one is to rewrite
all the requirements, normalising them to use the same vo-
cabulary; the second one is to use domain knowledge to as-
sociate requirements to the corresponding themes directly.
Due to large number of requirements and presence of multi-
ple sources the first option is not feasible, we therefore opt
for the second. Grouping requirements into concerns based
on domain knowledge is not new [4, 15]. Our experience is
that the resulting concerns are useful as they can be easily
discussed with domain experts.

As a consequence of doing a domain knowledge based
analysis of our requirements and concerns we also noticed
that the information contained in the original requirements,
in some cases, needs to be combined with domain knowl-
edge. This in order to generate new requirements that are
more suitable for understanding concern relationships. This
is similar to the approach proposed by Bar-On et al. [5],
where implied actions are used to generate new derived re-
quirements.

4.4 Possible Extensions to Theme/Doc
Given our experience using Theme/Doc in the SM do-

main, we propose possible enhancements that should address
the limitations we encountered:

Granularity.
In order to improve the information of requirements par-

ticipating in a crosscutting relationship, it should be possible
to add the IDs of the affected requirements (or some kind of
quantifier) in the form of tags attached to the crosscutting
arrows. It would thus be possible to clearly express which
are the affected requirements.

Expressing Interactions.

2165

Theme/Doc’s graphical notation needs to be extended to
support expressing interactions. One way to do this is to
include relationships between concerns, as we did in Fig. 1.

Adaptability to domain-specific requirements.
To fix this we need to consider a time for adding domain

specific knowledge, this may imply adding some specific task
in the process of Theme, probably during the requirements
processing (where requirements are split, removed or added).

5. EVALUATION OF MDSOCRE
MDSOCRE (Multidimensional Separation of Concerns in

Requirements Engineering) is the evolution of a line of AORE
approaches such as PreView and ARCaDe [18]. As it ap-
pears to provide the most expressive and flexible constructs
for binding crosscutting concerns to base concerns, we choose
it as the second case in our study.

5.1 Brief overview of MDSOCRE
Multidimensional Separation of Concerns in Require-

ment Engineering [15], is a refinement of the ARCaDe ap-
proach [18]. In contrast to Theme, it does not provide vi-
sualisation facilities. MDSOCRE treats the concerns in a
uniform fashion, regardless of the nature of the requirement
(functional or non-functional). It makes it possible for the
requirement engineer to choose a subset of requirements to
observe the influences on each other and to analyse cross-
cutting behaviour.

Conflicts referring to contradictory concerns are detected
and handled using contribution matrices. In such a matrix
rows and columns identify concerns and the cells denote how
the concerns contribute to the other (negative contributions
denote conflicts). These matrices help in the decision process
of which (parts of) features will be implemented. Conflicts
in MDSOCRE differ slightly from our definition in Sect. 3.2
(taken from [20]). In our case, concerns are not a subject
of negotiation, as all are required by some standard or reg-
ulation. We must however check that at runtime conflicting
concerns are not simultaneously active.

MDSOCRE also provides support for meta concerns:
generic concerns that are instantiated for specific systems.
The most important feature of meta concerns for us is their
capability for expressing commonly related concerns. We
will use this to express interactions in Sect. 5.3.

At an implementation level, MDSOCRE uses XML to ex-
press requirements and composition rules, we show an ex-
ample next.

5.2 Successful uses of MDSOCRE
Figure 4 shows how some of the concrete concerns of our

domain are expressed in this approach. The Concern tag is
composed of several requirements which are surrounded by
the Requirement tag. A requirement can be referenced by its
identifier (id) and can contain nested subrequirements. Due
to space constraints we do not include the detailed listing of
all concerns here3.

Composition rules are used to express crosscutting rela-
tionships. Figure 5 shows composition rules, consisting of a
Constraint tag that defines how the base requirements are
constrained by aspectual requirements. The Constraint tag

3The complete set can be found online at
http://pleiad.cl/research/adi

Figure 4: Game and Game Recall concerns

has actions, operators and outcome elements, used to ex-
press in detail how the base is affected. The action and
operator tags informally describe how the base concern is
constrained, imposing conditions in the composition. The
operators express temporal intervals, temporal points or re-
strictions between sets of concerns. The outcome tags (sat-
isfied and fulfilled) define the result of such composition, to
assert that constraints have been successfully imposed. For
detailed information about the semantics of these elements,
refer to [15].

The first composition rule of Fig. 5 shows how the Me-
ters concern crosscuts the Game concern. In this example
we have used the outcome action “fulfilled”, because there
is no other set of requirements to be satisfied. Otherwise
the action value should have been “satisfied” and the set of
requirements that are satisfied. This would be the case of
the Error Condition composition, since when such a condi-
tion is detected an action must be taken, i.e. a requirement
has to be satisfied after the constraints have been applied.
A concrete example of this is the door open error condition:
it has to be reported after it has been detected and the SM
should lock up until the condition is resolved.

The granularity of the approach is adequate for our case
study, since it is possible to clearly state which requirements
are affected. The flexibility provided by the parametrised
constraint tag helps to express different variants of cross-
cutting relationships. For example, we combine actions and
operators to document the interactions. We used the action
ensure and the operator with to represent a Dependency in-
teraction. This follows the informal definition by Moreira et.
al. [15], that says that a certain condition for a requirement
that is needed actually exists. We used the action provide
and the operator for for Reinforcement, as it specifies addi-
tional features to a set of concern requirements.

5.3 Limitations of MDSOCRE

2166

Figure 5: Composition rules for Meters and Error
Condition concerns

The actions and operators included in the composition
rules only describe relationships between the crosscutting
concern and the selected base concern. As we explained in
Sect. 3.2, interactions occur even between concerns without
a crosscutting relationship. In our case we need to express
somehow that G2S depends on the existence of Meters to
report this information and also that having Error Condi-
tions could reinforce the functionality of G2S enabling it to
report a new set of events (errors). These interactions as
well as mutex (see Sect. 3.2) are not explicitly supported by
this approach.

As a workaround we have combined pairs of actions and
operators, for example: the action ensure and the opera-
tor with to represent a Dependency in the case of Meters
and G2S, and the action provide with the operator for to
represent reinforcement of Error Conditions and G2S.

This solution however has two downsides:

1. It forces the use of compostion rules even when no
crosscutting is present, which seems contradictory with
the original purpose of composition rules expressed by
the authors: “they describe how a concern cuts across
other concerns...” [15]

2. The expressiveness of our combinations is not optimal,
as it is not easy to map the different interaction types
with pairs of actions and operator. Consider for in-
stance provide for compared to the word “reinforce”.
Reinforce makes it explicit that the interaction is a
positive influence to the other aspect, but we have to
use provide for which is only a way to try to represent
this idea.

An alternative would be the use of meta concerns, which
seem to be a natural place to store information regarding
interactions. Meta concerns are not exactly aimed at this
purpose, but with little extension they can support the dif-
ferent kinds of interactions. The drawback here is a concep-
tual mismatch: meta concerns were designed to document
generic concerns, but in our case interactions are manifest in
concrete concerns. We therefore did not use this alternative.

5.4 Possible Extensions to MDSOCRE
Unfortunately, MDSOCRE does not natively support the

notion of interactions. Although they can be expressed us-
ing a combination of actions and operators, it is not a clean
solution, as interactions are not explicitly documented. Al-
ternatively, the meta concern facility can be used to store
information regarding interactions, but it is concrete infor-
mation that would be stored in an artifact aimed at express-
ing generic information regarding concerns.

We believe that a new relationship between concerns,
aimed at documenting interactions, is needed. The new re-
lationship would enable us to express interactions between
concrete concerns, as well as between meta concerns.

6. RELATED WORK
We have encountered two other comparative studies for

AORE approaches but these however do not consider as-
pectual interactions. Sampaio et al. [19] analyse the speed
of the requirement analysis process and the quality of the
output. Their real world example (19 pages of requirements
specification), is considerably smaller than ours, (about 150
pages [11, 12, 16]). Chitchyan et. al. [9] use several com-
parison criteria (identification of concerns, composability,
decision support, traceability, evolvability and scalability).
This work is more conceptual, as it compares the approaches
without applying them to a concrete example, instead it con-
siders the mechanisms provided by each approach in light of
the criteria mentioned before.

AORE approaches that consider conflict resolution as part
of their methodology [7, 18] help stakeholders decide on
which concern to implement. In our case however all con-
flicting concerns must be implemented. Conflicts need to
be documented so that interactions are considered at design
time.

In [23] Whittle et al. present an approach called MATA,
based on model transformation where weaving is viewed as
a special case of graph transformation. MATA provides sup-
port for conflict and dependency detection, based on critical
pair analysis. The objective of this detection phase is to or-
der composition. More recent work, by Chitchyan et al. [8]
(not available at the time when we started modelling our
requirements) moves the focus towards a semantic analysis
of requirements. Here requirements are annotated and then
composition rules can be expressed using semantic queries.
This approach enables to automatically detect certain con-
flicts, with the aim of removing them. As we stated before,
we need to document the interactions, not removing (all of)
them.

In this work our focus lies on interactions between as-
pects, and capturing them at requirement level. Multiple
approaches for capturing requirements using aspects exist
that however do not provide support for interactions [3, 14,
22] we therefore did not include them in our case study.
Some other approaches, such as AORA [6] provide docu-
mentation of dependencies, but nothing is said regarding
mutex or reinforcement interactions.

7. CONCLUSIONS AND FUTURE WORK
This paper presents our applicability study of two AORE

approaches: Theme/Doc [2] and MDSOCRE [15], in the
Slot Machine Domain. We focused mainly on the expres-
siveness of these approaches in terms of interactions between

2167

requirements. We found that both approaches lacked com-
plete support for our case and proposed some extensions to
both approaches that might address this.

From our analysis we conclude that, compared to
Theme/Doc, MDSOCRE has a strong point in that it al-
lows to specify the composition of concerns in detail. Both
approaches do not provide explicit support for expressing
interactions. We had to simulate this by defining new rela-
tionships between aspectual concerns, which was only pos-
sible in MDSOCRE. Using parametrised composition rules
allowed us to express interactions in an indirect way.

Finally, we noticed a considerable difference in the process
for attaching requirements to their concerns. Theme/Doc
relies on the analysis of the text of requirements, searching
for the concern name, while MDSOCRE relies on analyst’s
domain knowledge. As we have different sources with differ-
ent terminology, we found the MDSOCRE approach more
suitable for our needs.

Our future work consists of applying the enhancements
we propose in order to fully evaluate them, and to proceed
with the design phase of the application.

8. REFERENCES
[1] Recommended practice for software requirements

specifications. IEEE Std 830-1998, 1998.

[2] E. Baniassad and S. Clarke. Finding aspects in
requirements with theme/doc. In Early Aspects
Workshop at AOSD, March 2004.

[3] E. Baniassad and S. Clarke. Theme: An approach for
aspect-oriented analysis and design. In ICSE ’04:
Proceedings of the 26th International Conference on
Software Engineering, pages 158–167, Washington,
DC, USA, 2004. IEEE Computer Society.

[4] E. Baniassad, P. C. Clements, J. Araujo, A. Moreira,
A. Rashid, and B. Tekinerdogan. Discovering early
aspects. IEEE Softw., 23(1):61–70, 2006.

[5] D. Bar-On and S. Tyszberowicz. Derived requirements
generation: The dras methodology. Software Science,
Technology and Engineering, IEEE International
Conference on, 0:116–126, 2007.

[6] I. Brito and A. Moreira. Integrating the nfr framework
in a re model. In Early Aspects 2004: Aspect-Oriented
Requirements Engineering and Architecture Design,
workshop of the 3rd International Conference on
Aspect-Oriented Software Development, 2004.

[7] I. S. Brito, F. Vieira, A. Moreira, and R. A. Ribeiro.
Handling conflicts in aspectual requirements
compositions. Transactions in Aspect-Oriented
Software Development, 3:144–166, 2007.

[8] R. Chitchyan, A. Rashid, P. Rayson, and R. Waters.
Semantics-based composition for aspect-oriented
requirements engineering. In AOSD ’07: Proceedings
of the 6th international conference on Aspect-oriented
software development, pages 36–48, New York, NY,
USA, 2007. ACM.

[9] R. Chitchyan, A. Rashid, and P. Sawyer. Comparing
requirement engineering approaches for handling
crosscutting concerns. In J. Araújo, A. D. Toro, and
J. F. e Cunha, editors, WER, pages 1–12, 2005.

[10] S. Clarke and E. Baniassad. Aspect-Oriented Analysis
and Design. The Theme Approach. Object Technology
Series. Addison-Wesley, Boston, USA, 2005.

[11] Gaming Laboratories International. Gaming Devices
in Casinos, 2007. Available at:
http://www.gaminglabs.com/.

[12] Gaming Standard Association. Game to Server (G2S)
Protocol Specification, 2008. Available at:
http://www.gamingstandards.com/.

[13] J. C. Grundy. Aspect-oriented requirements
engineering for component-based software systems. In
RE ’99: Proceedings of the 4th IEEE International
Symposium on Requirements Engineering, pages
84–91, Washington, DC, USA, 1999. IEEE Computer
Society.

[14] I. Jacobson and P.-W. Ng. Aspect-Oriented Software
Development with Use Cases (Addison-Wesley Object
Technology Series). Addison-Wesley Professional,
2004.

[15] A. Moreira, A. Rashid, and J. Araujo.
Multi-dimensional separation of concerns in
requirements engineering. In Proc. 13th IEEE
International Conference on Requirements
Engineering, pages 285–296, 29 Aug.–2 Sept. 2005.

[16] Nevada Gaming Commission. Technical
StandardsăForăGamingăDevices And On-Line Slot
Systems, 2008. Available at:
http://gaming.nv.gov/stats regs.htm.

[17] A. Rashid and A. Moreira. Domain models are NOT
aspect free. In ACM/IEEE 9th International
Conference on Model Driven Engineering Languages
and Systems (MODELS06), volume 4199 of Lecture
Notes in Computer Science, pages 155–169. Springer
Verlag, October 2006.

[18] A. Rashid, A. Moreira, and J. Araújo. Modularisation
and composition of aspectual requirements. In AOSD
’03: Proceedings of the 2nd international conference
on Aspect-oriented software development, pages 11–20,
New York, NY, USA, 2003. ACM.

[19] A. Sampaio, P. Greenwood, A. F. Garcia, and
A. Rashid. A comparative study of aspect-oriented
requirements engineering approaches. In ESEM ’07:
Proceedings of the First International Symposium on
Empirical Software Engineering and Measurement,
pages 166–175, Washington, DC, USA, 2007. IEEE
Computer Society.

[20] F. Sanen, E. Truyen, B. D. Win, W. Joosen,
N. Loughran, G. Coulson, A. Rashid, A. Nedos,
A. Jackson, and S. Clarke. Study on interaction issues.
Technical Report AOSD-Europe Deliverable D44,
AOSD-Europe-KUL-7, Katholieke Universiteit
Leuven, 28 February 2006 2006.

[21] P. Tarr, H. Ossher, W. Harrison, and J. Stanley
M. Sutton. N degrees of separation: multi-dimensional
separation of concerns. In ICSE ’99: Proceedings of
the 21st international conference on Software
engineering, pages 107–119, Los Alamitos, CA, USA,
1999. IEEE Computer Society Press.

[22] J. Whittle and J. Araújo. Scenario modelling with
aspects. IEE Proceedings - Software, 151(4):157–172,
2004.

[23] J. Whittle and P. Jayaraman. Mata: A tool for
aspect-oriented modeling based on graph
transformation. pages 16–27, 2008.

2168

