
Experience Report: AORE in Slot Machines

Arturo Zambrano, Johan Fabry and Silvia Gordillo

Abstract In the context of an industrial project in the domain of slot machines we
needed to perform Aspect Oriented Requirements Engineering, with a special em-
phasis on dependencies and interactions among concerns. The critical importance
of interactions in this domain demanded explicit and detailed documentation of all
interactions. We evaluated two AORE approaches: Theme/Doc and MDSOCRE, to
establish their applicability in our setting. In this work we report on our experience,
showing successful uses of both approaches and also where they fall short. To ad-
dress these limitations, we have proposed some enhancements for both approaches
and we present them here as well.

1 Introduction

To have Aspect-Oriented Requirements Engineering (AORE) gain the acceptance
of the software development industry and become a mainstream practice for re-
quirement engineering, it is necessary to demonstrate its power against industrial
problems. This work is intended to be a contribution in that direction.

In the context of an industrial project we are re-implementing the software that
runs on the casino gambling device best known as a slot machine (SM). Due to pre-
vious experience with this software we know that there are an important amount of

Arturo Zambrano
LIFIA, Facultad de Informática, Universidad Nacional de Plata, 50 y 115 La Plata, Argentina. e-
mail: arturo@lifia.info.unlp.edu.ar

Johan Fabry
Pleiad Lab, DCC, Universidad de Chile, Blanco Encalada 2120, Santiago, Chile. Partially funded
by FONDECYT project 1090083. e-mail: jfabry@dcc.uchile.cl

Silvia Gordillo
LIFIA, Facultad de Informática, Universidad Nacional de Plata, 50 y 115 La Plata, Argentina.
e-mail: gordillo@lifia.info.unlp.edu.ar

1

2 Arturo Zambrano, Johan Fabry and Silvia Gordillo

crosscutting concerns in slot machine applications. Moreover, many of these con-
cerns interact with each other. We therefore have opted to use Aspect-Oriented Soft-
ware Development in our new implementation.

Being aware of the critical importance of interactions in this domain, we have
focused early in the development cycle, i.e. in the AORE phase, on interaction mod-
eling. Our specific objective for this step is to document all interactions explicitly.
This information would then be used later in the design and implementation phases.
We therefore require the result of the modelling process to be a consistent model of
the requirements, containing detailed and explicit interactions. To accomplish this,
we needed to be able to rely on expressive mechanisms in the selected modeling
techniques for this phase. To establish their suitability to our needs we therefore
performed an evaluation of two existing AORE approaches.

We elected to evaluate performing requirements engineering using both the The-
me/Doc approach [3] and Multidimensional Separation of Concerns for Require-
ments Engineering (MDSOCRE) [8], focusing on how these allow us to express
and document aspectual dependencies and interactions. The choice of these two
approaches was mainly based on our perception of their maturity and of their accep-
tance in the AORE community, the latter as reflected by their publication record.

In this text we report on our experiences evaluating the above two approaches,
and include proposals for extending them where they fall short. Our evaluation has
been reported in more detail in [13]. In this chapter, we focus on the more salient
points of the evaluation and add our proposals for extension. Briefly put, our evalu-
ation has shown that both of the approaches we evaluated enable us to express the
requirements, but neither of them satisfies our needs with regard to the specifica-
tions of interactions. We were however able to extend both approaches such that
these limitations were overcome.

This chapter is organised as follows: Sect. 2 characterizes the slot machine do-
main, its concerns, and requirements. In Sect. 3 we present the results of applying
the two AORE approaches to the SM domain, including report of their shortcomings
and proposals for extensions. Sect. 4 presents the conclusions for our work.

2 Requirements for Slots Machines

A slot machine (SM) is a gambling device. It has five reels which spin when a play
button is pressed. A SM includes some means for entering money, which is mapped
to credits. The player bets an amount of credits on each play, the SM randomly
selects the displayed symbol for each reel, and pays the corresponding prize, if any.
Credits can be extracted (called a cashout) as coins, tickets or electronic transfers.

Requirements for the SM domain are defined in different documents: Regula-
tions (for each jurisdiction), standards (documents released by certification labora-
tories) and protocol specifications (technical documents for interoperability). These
are written by different stakeholders, with diverse interests and backgrounds. This
results in a large set of documents using multiple terms for describing the same ob-

Experience Report: AORE in Slot Machines 3

ject, action or event. Furthermore, in some cases it is necessary to complement and
normalise different sources referring to the same topic. For instance, consider the
case of Error Conditions, which are treated by both the Nevada regulations [9] and
the GLI standard [7]; some of the conditions specified by the regulations match, but
others are defined by just one of them.

A notable characteristic of communication protocol requirements, which has an
impact on requirements modeling, is that they are divided in topics and that part
of the communication functionality is optional. As we will see later, these optional
requirements are the source of one of the aspectual interactions we need to deal
with.

2.1 Crosscutting Concerns in the Slot Machine Domain

Based on our experience in the domain, we organised the requirements as follows,
where Game is a base concern and the rest are crosscutting concerns1. As the domain
is complex, there may be other possible concern decompositions. We choose this
one because, according to our experience and observations, it properly modularises
the different required features of slot machines and shows the interactions that are
at the core of this evaluation.

Game: This is the basic logic of a gambling device at a casino. The user can
enter credits into the machine, and then play. The output is determined randomly
and when the player wins, he is awarded an amount of credits.

Metering: This refers to a set of (hundreds of) counters that are used to audit the
activity of the game. For instance, there are meters that count the number of plays,
the total amount bet, total won, error condition occurrences, etc.

Program Resumption: Requirements in this concern determine how the ma-
chine should behave after a power outage, specifying which data and state need to
be recovered.

Game Recall: This refers to the information that must be available about the
current and previous plays, in order to solve any dispute with players.

Error Conditions Under certain circumstances, the game should detect error
conditions and behave accordingly. This concern defines what are considered error
conditions and how the game must react to them.

Communications The SM is connected to a reporting system (RS). This concern
defines the kinds of data, the format and when data must be exchanged between the
SM and RS. Several communication protocols with similar functionality exist. In
this work we will refer to the most widely used protocols in the SM industry: Game
to Server protocol (G2S) and Proprietary Communication Protocol (PCP2).

1 We use the terms Base and crosscutting concerns as usual in the AOSD community.
2 Licensing issues prevent us to use the real protocol name and disclosing implementation details.

4 Arturo Zambrano, Johan Fabry and Silvia Gordillo

Demo The demo concern contains the requirements specifying how the game be-
haves in this mode. Playing the game in demo allows testing hardware and software
works, simulating events such as entering money or winning a prize.

2.2 Interactions in the Slot Machine Domain

We based our investigation, and therefore this discussion on the AOSD-Europe tech-
nical report that gives an overview on aspect interactions [11]. In this report, the
authors classify aspect interactions into dependency, conflict, mutex (mutual exclu-
sion) and reinforcement. Dependency is the case where one aspect explicitly needs
another to work correctly. A conflict between two aspects happens when they work
correctly in isolation, but the presence of both at the same time negatively influences
the behavior of the system. A mutual exclusion (mutex for short) occurs when two
aspects implement the same functionality, but only one of them can be used at a
time. Reinforcement is a positive interaction where an aspect influences the correct
working of another, allowing it to provide extended functionality. Note that, even
though the consequence of mutex and conflict are the same (just one of the con-
flicting aspects can be active at a time) there is a semantic difference: mutex applies
to aspects that implement similar behavior, while conflict is more general and ap-
plies to any kind of incompatibility between aspects. We found this classification to
match the kinds of interactions we observed in the SM domain.

For example, in the SM domain, there is a conflict between the Demo and Meters
concerns, since Meters works correctly without Demo, but if Demo mode is active,
activity in the machine must not be counted by Meters. An example of mutex is
in the communication protocols: it is forbidden to have two protocols providing
the same functionality at the same time. A dependency example is the relationship
between Communications and Meters; the protocol needs to communicate the status
of the SM, which is in part represented by the meters. Finally, a reinforcement is a
positive interaction, for instance between Error Conditions and Communications
concerns (Proprietary Protocol and G2S Protocol). The existence of error condition
detection enables communication protocols to provide “extra” functionality, in this
case real time error condition reporting.

Understanding how concerns interact with each other is key information that
needs to be passed to designers and programmers. For example, in the case of a
dependency the dependent concern will be affected by design decisions on the other
concern. On the other hand, if there is a mutex relationship, architectural mecha-
nisms should be provided to ensure that both aspects will not be active at the same
time.

Considering the concern division and the associated requirements, we have de-
duced the relationships between different concerns and identified their interactions,
as shown in Fig. 1. The notation in this figure is an ad-hoc mechanism to analyse
the relationships between concerns that we will try to model in the following sec-

Experience Report: AORE in Slot Machines 5

Fig. 1: Concern interactions. Regular arrows indicate crosscutting, dashed arrows
indicate interactions between concerns, tagged with UML-like stereotypes.

tions using well known AORE approaches. The base concern (Game) is depicted
by a box and crosscutting concerns by ovals. Relationships 1 to 7 are crosscutting
(solid arrows). For each, there is a crosscutting concern where one or more require-
ments cut across several requirements on the base requirement (where the arrow
ends). For example, consider the relationship between Error Conditions and Game,
where the behaviour associated with error conditions needs to be woven into the
game behaviour. Requirements in Game that could raise an error condition vary: a
bill inserted, the printer is out of paper, tilt, a door opened, etc.

In Fig. 1, relationships 8 to 14 are interactions, which are depicted by dotted
lines. Dependency and reinforcement are asymmetric, so the arrowhead indicates
the direction of the relationship, while mutex and conflict are symmetric, so no ar-
rowhead is used. Table 1 describes them and presents potential consequences of not
considering interactions during the design/implementation phases. We use an infor-
mal notation here and will later evaluate how different AORE approaches perform
while trying to model such information more formally.

2.3 Selected Requirements

In this text, due to space limitations, we only use three concerns to illustrate our
work. We focus on the crosscutting relationship between Meters and Game, and the
dependency of G2S on Meters. Table 2 presents an extract of the requirements for
these concerns. We refer to [13] for a more complete treatment.

6 Arturo Zambrano, Johan Fabry and Silvia Gordillo

Table 1: Interaction consequences.

Interaction Description Consequence if not considered
8. Conflict between Demo and
Program Resumption

The demo mode fires fake events that must
not be counted nor restored after program
interruption.

Wrong data is loaded after a reboot while
in Demo, accounting mismatches, auditing
errors.

9. Conflict between Demo and
G2S

Both concerns cannot be active, because
demo fires fake events that must not be re-
ported.

Inconsistent accounting reports including
fake data.

10. Dependency of G2S and
Prop. Protocol on Meters

Data reported to the RS is stored or can be
derived from meters. Communication pro-
tocols need the meters to be up to date in
order to accomplish its purpose.

Communication protocols could report old
data if meters are not working.

11. Reinforcement of G2S
with Error Conditions

Parts of the G2S protocol are not manda-
tory for specific instances. When error con-
ditions are tracked in the game, additional
behaviour is made available in G2S, such as
real time event reporting.

Real time events are not reported when
available. Casino operator cannot efficiently
react to situations such as: coin-tilt, hand-
pay, stacker full.

12. Mutex between G2S and
Proprietary Protocol

There is overlapping functionality defined
in the requirements of both protocols.
Therefore they cannot be active at the same
time.

Overlapping features of both can interfere.
For example using both to keep the time in
sync between the SM and the RS may ren-
der the time of the SM inconsistent.

13. Conflict between Demo
and Meters

Data generated during demo mode must not
affect meter values.

Demo plays may result in inconsistent ac-
counting information if they are counted by
the meters.

14. Reinforcement of Prop.
Protocol with Error Condi-
tions

Similar to 11. Similar to 11.

3 Application of AORE

In order to deal with requirements and concerns in the SM domain we applied two
well known AORE approaches: Theme/Doc and MDSOCRE. This resulted in the
identification of some limitations and proposed extensions. We discuss this here,
first focusing on Theme/Doc and then on MDSOCRE.

3.1 Application of Theme/Doc

Theme/Doc [2] is the requirement analysis part of the Theme approach [3, 6]. In
Theme/Doc, requirements are organised into concerns, called themes. Themes can
be defined through an initial set of domain specific actions or concepts, others may
be recurring typical concerns: persistence, logging, etc.

In Theme/Doc a requirement is attached to a theme if the name of the theme
appears in the requirement. In other words, Theme/Doc relies on the name-based
analysis of actions in requirements to relate them to themes. In our study we did
not strictly follow this rule, as in our setting it is error prone due to ambiguities (see
Sect. 3.1.2). Instead we use the concerns we identified in Sect. 2.1 as themes.

Ideally, each requirement should belong to one theme, but chances are that some
of them are shared among themes, i.e. crosscutting. In Theme/Doc, a shared re-
quirement is considered crosscutting if: 1) the requirement cannot be split in order

Experience Report: AORE in Slot Machines 7

Table 2: Requirements for Game, Meters and G2S concerns.

Game
GM-1 Slot machines have 5 reels. GM-4 A slot machine has one or more devices for enter-

ing money.
GM-2 Reels spin when play button is pressed. GM-5 As money is inserted credits are “assigned” to the

player.
GM-3 Prizes are awarded according to a pay table. GM-6 A slot machine must provide some means for cash-

ing the credits out. It could be a ticket printer, a coin
hopper.

Meters
M-1 Credit meter: shall at all times indicate all credits or

cash available for the player to wager or cashout.
M-3 Accounting Meters: Coin In: [...] a meter that accu-

mulates the total value of all wagers [...]. Games-
played: accumulates the number of games played;
since power reset, since door close and since game
initialisation.

M-2 Credit Meter Incrementing: The value of every
prize (at the end of a game) shall be added to the
player’s credit meter [....]. The credit meter shall
also increment with the value of all valid coins, to-
kens [..].

M-4 Meters should be updated upon occurrence of
any event that must be counted, including: play,
cashout, bill in, coin in.

M-5 G2S meters are: gamesSinceInitCn Number of games since initialisation. WonCnt: Number of primary
games won by the player. LostCnt: Number of primary games lost by the player.

Communication: G2S
G2S-1 The G2S protocol is designed to communicate in-

formation between an SM, and one or more host
systems.

G2S-4 The device can generate an event in a unsolicited
manner or in response to a host command

G2S-2 Meter information can be queries by a host in real-
time or a host may set a periodic subscription to
cause the SM to send selected meters[..]

G2S-5 Current time-stamp can be set by the host.

G2S-3 Information provided by the SM is used for audit
purposes.

G2S-6 Command GetGameRecallLog is used by a host
to request the contents of a transaction log of last
plays from a SM.

to avoid tangling, 2) one of the themes dominates the requirement, 3) the dominant
theme is triggered by events in the base theme, and 4) the triggered theme is exter-
nally fired in multiple situations [6]. Note that for Theme/Doc, the term dominant
refers to the potentially crosscutting concern, i.e., which contains the requirement
that cuts across other requirements.

Fig. 2: Game, Meters, and G2S concerns expressed using the Theme/Doc notation.

An important feature of Theme/Doc is its visual support through diagrams. In
Theme/Doc views, requirements are represented by rounded boxes, and they are
organised around themes, which are depicted by diamonds. When a crosscutting
theme exists, a grey arrow is drawn from the theme that crosscuts (i.e. the aspect) to

8 Arturo Zambrano, Johan Fabry and Silvia Gordillo

the theme that is being cut across (i.e. the base). Consider for example Fig. 2, where
Game, Meters, and G2S concerns are represented along with their requirements and
crosscutting relationships.

3.1.1 Successful Uses of Theme/Doc

As shown in Fig. 2, the graphical approach of Theme/Doc makes it easy to read the
relationships between requirements and themes. Each theme can be easily identi-
fied along with its associated requirements. The four steps to check for crosscutting
helped us to confirm which are the crosscutting concerns. In the resulting diagrams,
the crosscutting relationships are reasonably documented, enabling us to easily iden-
tify which concern is playing the base and/or the aspectual role. Furthermore, it is
possible to express all the crosscuting relationships shown in Fig. 1, although we
cannot include them here due to space limitations.

3.1.2 Limitations of Theme/Doc

In our evaluation, we encountered the following limitations of Theme/Doc.
Granularity: As explained before, grey arrows denote crosscutting. As each

concern potentially contains many requirements, it is difficult to discern which spe-
cific requirement of the crosscutting theme affects which requirements on the base
theme. Consider for example Fig. 2 and the crosscutting relationship between Me-
ters and Game; here it is not possible to know which requirement in Meters is cross-
cutting. Furthermore, it is not possible to know which specific requirements in Game
are affected as the result of the crosscutting. Where possible, it is desirable to pass
that information to the design phase, so that base and aspectual components can be
properly designed. In fact, this information is available during the analysis phase
–identification of crosscutting themes– of Theme/Doc, but it is not made explicit.

Expressing Interactions: In Fig. 1 we show different examples of interactions
between aspectual concerns for requirements. If we consider Fig. 2 we can however
see that the interactions explained in Sect. 2.2 are missing. This is because The-
me/Doc lacks support for expressing interactions. For instance, missing in Fig. 2
is a dependency of G2S on Meters. This information is however crucial: Multiple
perspectives of a system (themes in this case) need to be combined to form a sys-
tem [12]. We require the dependency information to select a sound set of themes
for a system. For example, it is not possible to build an SM with G2S support but
lacking Meters. This is because G2S requires the existence of Meters to provide its
own functionality. The same happens with conflicts, for instance, between Demo
and Meters. It is critical to know that architectural or design mechanisms need to be
included to avoid the activation of both concerns at the same time. The reinforce-
ment from Error Conditions to G2S is also missing. Documenting it signals that an
optional part of G2S is active when Error Conditions are available.

Experience Report: AORE in Slot Machines 9

Adaptability to our case study requirements: In our case study there is no sin-
gle requirements specification unifying all the sources and we are faced with signif-
icant ambiguity. This in contrast to an ideal requirements specification that is com-
plete, unambiguous, verifiable, consistent, modifiable and traceable [1]. This variety
of sources results not only in synonyms being used in different documents. There
are complete key ideas, concepts or interactions that are expressed using different
vocabulary and style. Although we might consider our case as being exceptional, it
is based on requirements from a real-world problem and it is worthwhile to examine
the impact of this.

The ambiguity we face affects the mechanism proposed in Theme/Doc to assign
requirements to themes, and to identify potential crosscutting themes. In the most
ambiguous case, the requirement and the theme could be related by implied actions:
actions that are activated as a consequence of other actions [5]. Unfortunately, the
ambiguities we found cannot be solved by using a synonym dictionary as proposed
in [3].

We consider two options to resolve ambiguities. The first one is to rewrite all the
requirements, normalising them to use the same vocabulary; the second one is to use
domain knowledge to associate requirements to the corresponding themes. Due to
the large number of requirements and presence of multiple sources only the second
option is feasible, and moreover is a well known practice [4, 8].

As a consequence of doing a domain knowledge based analysis of our require-
ments, new requirements that are more suitable for understanding concern relation-
ships, may appear. This is similar to the approach proposed by Bar-On et al. [5],
where implied actions are used to generate new derived requirements.

3.1.3 Extensions to Theme/Doc

Quantification Labels for Granularity In order to tackle the granularity problem,
we introduce the concept of quantification labels, which are tags that allows us to
clearly specify which requirements participate in a crosscutting relationship (and are
also permitted in the interaction relationships we introduce below). A quantification
label is an expression referring to a base concern and a crosscutting concern. Fig. 3
shows an example where the Meters concern crosscuts the Game concern, we can
see here that requirement M-4 crosscuts requirements GM-2 to GM-6.

Quantification labels allow us to specify which requirements are involved in a
given crosscutting (and interaction) relationship, from both sides: the crosscutting
concern and the base concern. It has two parts separated by a colon:

Crosscutting requirements IDs: this is a list, a range, or the keyword all that indi-
cates which requirements are crosscutting in the concern where the arrow has its
origin.

Base concern requirements IDs: this is a list, a range, or the keyword all that indi-
cates which requirements are the requirements affected by the crosscut concern
(the destination of the arrow).

10 Arturo Zambrano, Johan Fabry and Silvia Gordillo

Fig. 3: Quantification labels applied to the crosscutting relationship between Meters
and Game concerns.

Interaction Relationships In order to properly express the interactions between
concerns, we added a new kind of relationship to Theme/Doc. The new interaction
relationship is denoted using a dashed arrow. The arrow also has a label indicating
the kind of interaction. Quantification labels can be used along with interaction rela-
tionships, this allows to clearly state the requirements interacting for each concern.
The interaction relationship can be symmetrical (mutex or conflict) or directional
(dependency and reinforcement).

Fig. 4 shows a dependency between the G2S concern, which needs the informa-
tion stored by the Meters concern. The dotted line indicates the interaction, which
in this case is directional. Quantification labels are also included to indicate the
requirements participating in the interaction. The “In Balance Meters” label is a
derived requirement, which we explain below.

Fig. 4: Dependency of G2S concern on Meters concern.

Ambiguity of Requirements In our setting, requirements disambiguation needs
to be performed by domain experts. The Theme/Doc methodology establishes spe-
cific steps for requirements processing (e.g. split, add and remove) [3]. We propose
to add a dedicated step that performs disambiguation before performing the existing
processing steps. As a result, during this step new (derived) requirements may arise
as shown in Fig. 4. In this case the derived requirement states that meters need to
be updated in consistent sets, so that they are reported to the accounting reporting
system when they are in balance. This derived requirement is represented by the In
Balance Meters label in Fig. 4.

Experience Report: AORE in Slot Machines 11

3.2 Application of MDSOCRE

MDSOCRE (Multidimensional Separation of Concerns in Requirements Engineer-
ing) is the evolution of a line of AORE approaches such as PreView and AR-
CaDe [10]. MDSOCRE treats the concerns in a uniform fashion, regardless of the
nature of the requirement (functional or non-functional). It makes it possible for the
requirement engineer to choose a subset of requirements to observe the influences
on each other and to analyse crosscutting behavior.

In contrast to Theme, MDSOCRE does not provide visualisation facilities. Con-
flicts referring to contradictory concerns are detected and handled using contribu-
tion matrices. Conflicts in MDSOCRE differ slightly from our definition in Sect. 2.2
(taken from [11]). In our case, concerns are not a subject of negotiation, as all are
required by some standard or regulation. We must however check that at runtime
conflicting concerns are not simultaneously active.

MDSOCRE uses XML to express requirements and composition rules. For ex-
ample, listing 1 shows how the Game and Meters concerns are expressed in this
approach. The Concern tag is composed of several requirements which are indi-
cated by the Requirement tag. A requirement can be referenced by its identifier
(id) and can contain nested sub-requirements. Furthermore, concerns and require-
ments can be related through composition rules, using the Composition element,
which we will explain in the following section.

Listing 1: Concerns written using MDSOCRE

1 <Concern name="Game">
2 <Requirement id="1"> A slot machines has 5 reels. </Requirement>
3 <Requirement id="2"> Reels spin when the play button is pressed.</

Requirement>
4 <Requirement id="3"> Prizes are awarded according to a pay table.
5 </Requirement>
6 <Requirement id="4"> A slot machine has one or more devices for entering

money. </Requirement>
7 <Requirement id="5"> As money is inserted credits are "assigned" to the

player. </Requirement>
8 <Requirement id="6"> A slot machine must provide means for cashing the

credits out.</Requirement>
9 </Concern>

10 <Concern name="Meters">
11 <Requirement id="1"> Credit meter: shall at all times indicate all credits
12 or cash available for the player to wager or cashout
13 </Requirement>
14 <Requirement id="2"> Credit Meter Incrementing: The value of every
15 prize [...futher details omitted ...]
16 </Requirement>
17 <Requirement id="3"> Accounting Meters: Coin In: a meter that
18 accumulates the total value of all wagers [... omitted ...]. </Requirement>
19 <Requirement id="4"> Meters should be updated upon occurrence of any event

that must be counted, including: play, cashout, bill in, coin in.
20 </Requirement>
21 </Concern>

12 Arturo Zambrano, Johan Fabry and Silvia Gordillo

3.2.1 Successful uses of MDSOCRE

Listing 2: Compositions written using MDSOCRE

1 <Composition>
2 <Requirement concern="Meters" id="4">
3 <Constraint action="enforce" operator="on">
4 <Requirement concern="Game" id="3,4,5,6" />
5 </Constraint>
6 <Outcome action="fulfilled"/>
7 </Requirement>
8 </Composition>

Composition rules are used to express crosscutting relationships. Listing 2 shows
a composition rule, consisting of a Constraint tag that defines how the base re-
quirements are constrained by aspectual requirements. The Constraint tag has
actions, operators and outcome elements, used to express in detail how the base
is affected. The action and operator tags informally describe how the base con-
cern is constrained, imposing conditions in the composition. We shall use these in
Sect. 3.2.2 and 3.2.3, for more detailed information about them we refer to [8].

The composition rule in Listing. 2, shows how the Meters concern crosscuts the
Game concern. In this example we have used the outcome action “fulfilled”, because
there is no other set of requirements to be satisfied.

The granularity of the approach is adequate for our case study, since it is possi-
ble to clearly state which requirements are affected. The flexibility provided by the
parametrised Constraint tag helps to express different variants of crosscutting
relationships. For example, we combine actions and operators to document the in-
teractions. We use the action ensure and the operator with to represent a Dependency
interaction. This follows the informal definition by Moreira et. al. [8], that says that
a certain condition for a requirement that is needed actually exists. We use the action
provide and the operator for for Reinforcement, as it specifies additional features to
a set of concern requirements.
3.2.2 Limitations of MDSOCRE

No Support for Interactions The actions and operators included in the composition
rules only describe relationships between the crosscutting concern and the selected
base concern. As we explained in Sect. 2.2, interactions occur even between con-
cerns without a crosscutting relationship. In our case we need to express somehow
that G2S depends on the existence of Meters to report this information and also that
having Error Conditions could reinforce the functionality of G2S enabling it to re-
port a new set of events (errors). These interactions as well as mutex (see Sect. 2.2)
are not explicitly supported by this approach. Note that conflict is not supported in
any way, as they are supposed to be removed through negotiation. As a workaround
we have combined pairs of actions and operators, for example: the action ensure and
the operator with to represent a Dependency in the case of Meters and G2S, and the
action provide with the operator for to represent reinforcement of Error Conditions
and G2S.

This solution however has two downsides:

Experience Report: AORE in Slot Machines 13

1. It forces the use of composition rules even when no crosscutting is present, which
seems contradictory with the original purpose of composition rules expressed by
the authors: “they describe how a concern cuts across other concerns...” [8]

2. The expressiveness of our combinations is not optimal, as it is not easy to map
the different interaction types with pairs of actions and operator. Consider for in-
stance provide for compared to the word “reinforce”. Reinforce makes it explicit
that the interact on is a positive influence to the other aspect, but we have to us
provide for to represent this idea.

No Support for Unification As mentioned before in Sect. 3.1.2, in our setting
there are multiple and ambiguous requirement documents and, as in Theme/Doc,
this raises unification issues. Some concerns, such as Meters, are defined in many
requirements in several of these documents. This makes it difficult to trace the com-
plete definition of meters (which is necessary for the design and implementation).
Rewriting all the requirements referring to meters, to condense them into one piece
of requirements is not feasible due to the large number of requirements. Besides
this, it is difficult to maintain the merged version of the requirements once one of
the sources evolves. We conclude that for MDSOCRE we need a way of keeping
related requirements linked without coupling them, so that they can evolve at their
own pace.

3.2.3 Extensions of MDSOCRE

Explicit interaction compositions In order to provide explicit support for interac-
tions, we extended MDSOCRE. After evaluating several possible extensions that are
not included here due to space limitations, we decided to extend the Composition
element with a new Interaction element. It can be parametrised with the spe-
cific interaction type. The Interaction element is contained in a Requirement
element, and itself includes at least another Requirement element, as can be seen
in Listing 3. The interaction direction goes from the outer element to the inner one.
For example, Listing 3 is read as follows: requirements 1 and 2 from the G2S com-
munication protocol depends on requirement 3 from the Meters concern. Note that
this order only applies to the directional interactions dependency and reinforcement.

Listing 3: Explicit interaction support for MDSOCRE

1 <Composition>
2 <Requirement concern="G2S" id="1,2">
3 <Interaction type="dependency">
4 <Requirement concern="Meters" id="3"/>
5 </Interaction>
6 </Requirement>
7 </Composition>

Cross-references for Linked Requirements The different requirement sources
complement each other. Hence there is no unique and complete piece of text that
allows us to produce a full design for certain requierements. Therefore, to enable an

14 Arturo Zambrano, Johan Fabry and Silvia Gordillo

unabridged description of these requirements, we extended MSDOCRE with cross-
references. We added a new attribute, called seeAlso, to the Requirement ele-
ment. The value associated with this attribute is a list of requirements IDs where ad-
ditional information is present. The seeAlso allows to relate all the requirements
defining one concept (see Listing 4). These references are intended to be used in a
single concern. As we mentioned before, this issue also manifests itself in Theme,
but have not been able to solve it without overly cluttering the diagrams.

Listing 4: Cross references extension

1 <Concern name="Meters">
2 <Requirement id="1" seeAlso="3,4,5"> Credit meter: shall at all times

indicate all credits or cash available for the player to wager or
cashout. </Requirement>

3 <Requirement id="2"> Credit Meter Incrementing: The value of every prize
[...] </Requirement>

4 <Requirement id="3" seeAlso="1,4,5"> Accounting Meters: Coin In: a meter that
accumulates the total value of all wagers . Games-played: [...]

5 </Requirement>
6 <Requirement id="4" seeAlso="1,3,5"> Meters should be updated upon occurrence

of any event that must be counted, including: play, [...].
7 </Requirement>
8 <!-- From G2S Docs-->
9 <Requirement id="5" seeAlso="1,3,4"> Some G2S meters are: gamesSinceInitCn

Number of games since initialisation. [...]
10 </Requirement>
11 </Concern>

4 Conclusions

In our work, we evaluated two well-known AORE approaches in an industrial setting
– the slot machines (SM) domain – where many functional crosscutting concerns
are present. This domain is furthermore characterized by aspectual interactions, and
the legal applicability of several large requirement documents that have ambiguity
issues. In our previous experience, developing this software and not considering
aspectual interactions led to costly bugs in production.

When re-implementing the SM software we therefore decided for an AOSD ap-
proach and evaluated two AORE approaches for the first phase of the development
cycle. We found that both of these approaches: Theme/Doc and MDSOCRE how-
ever fall short. Theme/Doc showed problems with requirements granularity and lack
of aspectual interaction support. MDSOCRE presented a appropriate granularity, but
however lacks an explicit way to express interactions.

To address these shortcomings, we developed extensions to both approaches that
make Theme/Doc and MDSOCRE more suitable for the industrial problem at hand.
The extensions made to Theme/Doc allow us to explicitly document the interac-
tion between concerns as well as the requirements participating in the crosscutting
and interaction relationships. The extensions made to MDSOCRE allow us to relate
different requirements and explicitly support concern interactions.

Experience Report: AORE in Slot Machines 15

It is our opinion that applying existing AORE approaches to industrial software
is an important effort, as it may reveal shortcomings in these approaches, which is
what we have shown here. Using these approaches in different settings will show
avenues for improvement and extension of their applicability.

References

1. Recommended practice for software requirements specifications. IEEE Std 830-1998, 1998.
2. Elisa Baniassad and Siobhan Clarke. Finding aspects in requirements with theme/doc. In

Early Aspects Workshop at AOSD, March 2004.
3. Elisa Baniassad and Siobhan Clarke. Theme: An approach for aspect-oriented analysis and

design. In ICSE ’04: Proceedings of the 26th International Conference on Software Engineer-
ing, pages 158–167, Washington, DC, USA, 2004. IEEE Computer Society.

4. Elisa Baniassad, Paul C. Clements, Joao Araujo, Ana Moreira, Awais Rashid, and Bedir Tekin-
erdogan. Discovering early aspects. IEEE Softw., 23(1):61–70, 2006.

5. David Bar-On and Shmuel Tyszberowicz. Derived requirements generation: The dras method-
ology. Software Science, Technology and Engineering, IEEE International Conference on,
0:116–126, 2007.

6. Siobhán Clarke and Elisa Baniassad. Aspect-Oriented Analysis and Design. The Theme Ap-
proach. Object Technology Series. Addison-Wesley, Boston, USA, 2005.

7. Gaming Laboratories International. Gaming Devices in Casinos, 2007. Available at:
http://www.gaminglabs.com/.

8. A. Moreira, A. Rashid, and J. Araujo. Multi-dimensional separation of concerns in require-
ments engineering. In Proc. 13th IEEE International Conference on Requirements Engineer-
ing, pages 285–296, 29 Aug.–2 Sept. 2005.

9. Nevada Gaming Commission. Technical StandardsForGamingDevices And On-Line Slot Sys-
tems, 2008. Available at: http://gaming.nv.gov/stats regs.htm.

10. Awais Rashid, Ana Moreira, and Joāo Araújo. Modularisation and composition of aspectual
requirements. In AOSD ’03: Proceedings of the 2nd international conference on Aspect-
oriented software development, pages 11–20, New York, NY, USA, 2003. ACM.

11. Frans Sanen, Eddy Truyen, Bart De Win, Wouter Joosen, Neil Loughran, Geoff Coulson,
Awais Rashid, Andronikos Nedos, Andrew Jackson, and Siobhan Clarke. Study on interaction
issues. Technical Report AOSD-Europe Deliverable D44, AOSD-Europe-KUL-7, Katholieke
Universiteit Leuven, 28 February 2006 2006.

12. Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton. N degrees of separation:
multi-dimensional separation of concerns. In ICSE ’99: Proceedings of the 21st international
conference on Software engineering, pages 107–119, Los Alamitos, CA, USA, 1999. IEEE
Computer Society Press.

13. Arturo Zambrano, Johan Fabry, Guillermo Jacobson, and Silvia Gordillo. Expressing aspec-
tual interactions in requirements engineering: experiences in the slot machine domain. In
Proceedings of the 2010 ACM Symposium on Applied Computing (SAC 2010), pages 2161–
2168. ACM Press, 2010.

