
April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

International Journal of Software Engineering and Knowledge Engineering
c© World Scientific Publishing Company

A Fine Grained Aspect Coordination Mechanism

Arturo Zambrano

LIFIA, Facultad de Informática, Universidad Nacional de La Plata,

50 y 115, CP 1900, La Plata, Buenos Aires, Argentina

arturo.zambrano@lifia.info.unlp.edu.ar

Silvia Gordillo∗

LIFIA, Facultad de Informática, Universidad Nacional de La Plata,

50 y 115, CP 1900, La Plata, Buenos Aires, Argentina

silvia.gordillo@lifia.info.unlp.edu.ar

Johan Fabry†

PLEIAD, Computer Science Department (DCC), Universidad de Chile

Blanco Encalada 2120, Santiago, Chile
jfabry@dcc.uchile.cl

Aspect interactions and conflicts are an important issue for AOSD. Aspectual conflicts
are difficult to manage and, specifically semantic ones remain an open issue for AOSD.

In this work, we present a simple mechanism for handling semantic conflicts at the

granularity of aspect and advice in the resource awareness domain. We also analyse the
impact of such coordination mechanism on some important properties of software (some

of the so called ilities). We found that aspects can effectively be coordinated and remain
independent, improving their reusability, modularity and evolvability.

1. Introduction

Aspect oriented programming (AOP) provides for a new and better modularisation
mechanism for crosscutting concerns [12]. A much discussed and controversial fea-
ture in aspect oriented programs is obliviousness [11]. It started out as a key idea
behind AOP, but now we realize that the relationships between objects and aspects
and aspects and aspects are very complex, and total obliviousness is impossible –new
and more restricted forms of obliviousness are used today. In any case, obliviousness
is welcome as it promotes decoupling. Ideally, applications remain independent of
the existence of aspects. At the same time, aspects should be as oblivious as pos-
sible of each other, keeping their independence and easing their reuse. The goal is
to have independent aspects that are woven with the base application, resulting in
the final (composed) desired functionality.

∗also CICPBA
†Partially funded by FONDECYT project 1090083

1

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

2 Arturo Zambrano, Silvia Gordillo, Johan Fabry

Unfortunately, this is not always the case due to interactions of aspects. Such
interactions may arise during the composition of aspects or at runtime. Generally,
aspects are said to interact if they operate on the same joinpoints or if they struc-
turally affect code of the same base module [6, 16, 19]. As pointed out by Monga
et al. [14], these kind of interactions can be either be desired, e.g. if they are col-
laborations, or be conflicts. So, aspects can interact by collaborating (reinforcing)
or conflicting [17]. However, aspects can interact even when they do not work on
the same joinpoints. These are semantic interactions; their consequences can be ob-
served through the side effects that aspects produce during its execution. In certain
cases, as explained in section 2.2, an un-coordinated aspect activation can cause
the system to misbehave. Therefore, an aspect might affect the behaviour of other
aspects even when they are working on different joinpoints. As we will see, the
occurrence of this kind of conflicts might depend on run-time conditions.

We have studied semantic aspect interactions in the field of resource awareness.
Resource awareness [15] is a subdomain of context awareness [8]. Context awareness
is crosscutting, since context related behaviour tends to be spread along several ob-
jects. It can be modularised using AOP, as is shown in [23]. The use of AOP for
managing constrained resources is also advocated by Sousan et al. in [18]. In this
domain, aspects can be used to control and optimise usage of scarce resources. How-
ever, in order to save some resource, an aspect may consume other resources which
may be controlled by other aspects. In a previous work we have presented the bases
for a coordination mechanism which allows to coordinate aspects activation [24]. In
this work we present an extension that allows for a fine grained aspect coordination.
It allows advice activations to be controlled in order to avoid or solve conflicts. Con-
flict resolution based on this mechanism has effects on software ilities. For example,
solving semantic aspects interactions will increase reusability and adaptability, but
may potentially negatively impact on comprehensibility. Other studied properties
are: adaptability, evolvability, reusability, modularity, extensibility and scalability.
We analyse each affected property to evaluate the mechanism.

This paper is organised as follows: section 2 presents both the joinpoint and
semantic aspectual interaction problem. Section 3 motivates the need for a fine
grained aspectual control and present the developed mechanism. Section 4 analyses
the impact of the approach considering the software ilities. Section 5 reviews related
work in the area. Finally, section 6 concludes the paper and presents some future
work.

2. Aspect Interactions

In this section we will present joinpoint and semantic interactions, in order to give
context to our work.

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

A Fine Grained Aspect Coordination Mechanism 3

2.1. Joinpoint Aspect Interactions

Aspects can interact in several ways. The most frequently studied is by having
intersections in their pointcut shadows. That is, if more than one pointcut shadow
happens to affect the same joinpoint a potential interaction is present. This means
that, at least two aspects, may affect the same joinpoint.

This kind of potential interactions can be detected at weaving time. Depending
on the underlying AOP language or mechanism, it may be possible to expand the set
of joinpoints affected by aspects, and check which jointpoints are being captured by
more than one aspect. In that stage of composition, it is also possible to analyse how
the execution context of the joinpoint is being accessed (observed or manipulated).

The weakness in this joinpoint approach is that it could lead to identify false
conflicts. It is clear that, in many cases, having several aspects working on the same
joinpoints is not harmful, and this scenario does not imply a conflict. For example,
lets suppose there is a class whose instances are persistent and, for the same class,
we define every invocation of a set method to be logged; we consider both concerns
(Persistence and Logging) implemented as aspects. In this case, both aspects can
overlap since changing some instance variable through a setter should be reflected in
the DB and, as we said before, the setters need to be logged. The final composition
of the base class and Persistent and Logging aspects will not produce conflicts even
when they affect the same joinpoints, and possibly they access the same information
(objects’ internal state) from the execution context.

That category of interactions and conflicts, which here we call joinpoint conflicts
has been the focus of research in the AOP community, as can be seen in [9, 6, 4].
There is however another category of interactions that are not detectable through
joinpoint analysis, we call them semantic interactions.

2.2. Semantic Aspect Interactions

Semantic interaction and conflicts are not obvious, given that they can occur even
when aspects do not work on the same jointpoints. They might arise as a conse-
quence of a desirable feature such as low coupling: In order to keep coupling as
low as possible, aspects should not make assumptions about the existence of other
aspects. Thus aspects are more likely to be reused in isolation. Such independence
between aspects will lead to code each one as if it were working alone on the base
application. The behaviour of such aspects may affect objects in the base applica-
tion, which are crosscut by other aspects, but not necessarily by working on the
same joinpoints.

To illustrate this situation consider the following example, where conflicting
aspects, implementing resource awareness, lead the system to an undesirable state.

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

4 Arturo Zambrano, Silvia Gordillo, Johan Fabry

2.2.1. Memory Saver Vs Battery Power Optimiser

Consider a system which runs in a mobile device and which is attached to a wireless
network. In this context, suppose there are two aspects which deal with optimisa-
tions of use of memory and power.

Memory Saver Aspect monitors the memory usage by periodically checking the
amount of free program memory. When it detects there is little memory available,
this aspect forces all caches to flush their content.

Battery Power Optimiser Aspect is in charge of maximising the lifespan of the
battery charge. Since wireless network connections consume a lot of power, this
aspect delays such connections; that is, whenever the mobile client tries to send
data to the server, the optimiser captures the outgoing data and stores it temporar-
ily. When enough data has been collected, the optimiser creates a real network
connection and sends all the stored data to the server.

Battery Power Optimiser affects the resources it needs to perform optimisations,
mainly memory, which is also the focus of the Memory Saver aspect.

Both Memory Saver and Battery Power Optimiser are oblivious to each other,
that is a desired property but, even though each aspect is aimed to work on its
own concern, each one is influenced by the behaviour of the other (depending on
dynamic conditions).

In a runtime scenario where there is few available memory and low battery
power, aspects can enter in a vicious circle of activations (see figure 1):

(1) In order to free memory, the memory saver will try to empty buffers, which in
the case of network buffers implies to do the real connections, thus using power.
After spending power, the battery optimiser aspect could enter in action.

(2) The battery optimiser, in turn, will try to avoid doing connections, so it will
attempt buffering data, thus spending memory. This may activate the memory
optimiser aspect, there going back to 1.

Figure 1. A cycle of resource consumptions and aspect activations.

Figure 1 illustrates this problem, ellipses are resources, and rectangles are as-
pects. Dotted arrows indicate consumption of resources. Solid arrows indicate a

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

A Fine Grained Aspect Coordination Mechanism 5

resource is under the control of the aspect where the arrow arrives. An aspect in
charge of optimising a resource is activated when its resource reaches some thresh-
old level. In short, aspects are activated as side effects of the execution of other
aspects.

Note that, in other scenarios where, for example, there is low battery power but
enough memory for buffering, there is no conflict, because there is no problem in
buffering as needed, and save some power. Or consider the opposite case, where
there is little free memory but enough battery, in that case it is possible to transmit
all the data in order to minimize the memory usage for buffering.

3. Aspect Control for Resource Awareness

3.1. Prior Work

In [24] we proposed an approach for semantic conflict resolution based on aspect
coordination. This coordination is based on the idea of (de)activation of aspects
according to the system’s runtime context.

The target domain of this work was resource awareness. In order to optimise the
use of a resource, another resource might eventually be affected, so it may imply
that another aspect to get activated. To avoid aspects entering in a vicious circle
of activations, it is necessary to coordinate their behaviour. However, having the
aspects coded assuming the existence of other aspects is not feasible, since this
would compromise its reusability.

In the mentioned work, we presented a simple mechanism for activating and de-
activating aspects based on metadata describing aspects’ properties. Such metadata
is used along with information about the runtime context to decide if it is necessary
to deactivate some aspect in order to avoid conflicts.

A downside of that work was that aspects can just be completely (de)activated.
In certain situations, such a feature forces the developer to split a single concern
into several aspects. Imagine an optimisation concern that can be implemented as
an aspect with several advices. If just some of the advices produces an undesired
side-effect, the full aspect containing it must be deactivated. This limitation can
lead to split the implementation of a simple concern into several aspects (and the
corresponding source code files), which might compromise its maintainability (an
example is provided in section 3.3).

In the next subsections we present an approach, aimed at providing advice level
coordination capabilities. This finer control allows parts of aspect behaviour (ad-
vices) to be active or not. As a consequence, a concern can be implemented as one
aspect while its behaviour can be effectively coordinated at advice level.

3.2. Running Example

As a running example for this paper we use a number of aspects for resource aware-
ness. In this field, aspects can be used to implement resource management policies

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

6 Arturo Zambrano, Silvia Gordillo, Johan Fabry

[7, 18, 23]. For each resource, there should be an aspect implementing resource man-
agement. In addition, resource management for each resource may involve several
actions that need to be performed in order to optimise its consumption. These
actions can be mapped to one or several advices.

The following list presents different policies that different resource optimiser
aspects can apply:

3.2.1. Memory Optimisation

(1) Cache flushing: release memory used by flushing caches. This action may imply
the consumption of other resources such as bandwidth in the case of network
caches.

(2) Data compression: releases memory but consumes more processor cycles.

3.2.2. Battery Power Optimisation

(1) Caching: minimise the use of power intensive resource such as wireless network
(releae bandwidth), but cosumes memory for the cache.

(2) Adaptive backlight power: decrease it to save battery power, no other resource
is affected.

(3) Decreasing CPU frequency in order to save battery: it is a way of consuming
processor cycles, since there will be less processing power available.

3.2.3. Bandwidth Optimisation

(1) Data compression: releases memory but consumes more processor cycles.
(2) Selecting the encryption protocol: SSL (for instance using DES) is secure but it

is a verbose protocol (so network consuming), if bandwith is scarce a possible
policy is to stop using encryption or replace it by a lightweight encryption
algorithm. Simpler encryption also releases CPU cycles.

3.3. Finer Aspectual Control

The main limitation of our previous work is a coarse granularity in the aspect coor-
dination system. As we stated before, it was only possible to (de)activate complete
aspects. As we will show in this section, there are situations where parts of an as-
pect’s behaviour conflict. In such situations, it may be unnecessary to deactivate
the full aspect, since the advices that are not harmful can be executed.

Given the policies mentioned in the previous subsection, consider the following
cases where conflicts arise just in parts of aspects’ behaviour.

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

A Fine Grained Aspect Coordination Mechanism 7

Table 1. Aspects effect on resources. R and C means that a policy respectively releases or consumes

the resource named in the column. Conflicts are shown in bold.

Resources
Battery Memory Processor Bandwidth

Mem. Opt.
P 1 - R - C
P 2 - R C -

Batt. Opt.
P 1 R C - R
P 2 R - - -
P 3 R - C -

Band. Opt.
P 1 - - C R
P 2 - - R R

3.3.1. Case 1:

A resource aware system running in a notebook. When the power wire is
unplugged, the battery optimisation aspect is activated. In order to save
power, it will activate the three policies stated above. However, if the user
is performing some intensive processing task, it would not be desirable to
decrease the CPU frequency.

In this case it would be useful to have just part of the power consumption policies
active. On the other hand it is still desirable to have all the power consumption
concern implemented as a single aspect, so that its modularity and cohesion are
preserved.

3.3.2. Case 2:

If Memory Optimiser is running and Battery Optimiser comes into play
after the power wire is disconnected, they may enter in conflict. Policy 1 of
Memory Optimisation conflicts with policy 1 of Battery Optimisation (see
the corresponding rows of table 1).

In table 1 we can see that several aspects and advices have different, potentially
counterproductive, effects on resources. Aspects and the implemented optimisation
policies are organised as rows, while resources are in columns. “R” and “C” means
the policy releases or consumes the resource. Conflict between memory optimiser
first policy and battery power optimiser is shown in bold.

Note that such policies are just part of the aspects implementing the memory and
battery optimisation concerns. Other policies might not conflict at all. Therefore,
it would be desirable to have conflicting policies switched off, but letting the non-
conflicting ones as active policies.

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

8 Arturo Zambrano, Silvia Gordillo, Johan Fabry

Table 2. Summary of aspects and advices.

Aspect Policy Adv.# Advice Details

Memory Opt.
Flushing 1 Flushes caches.
Data 2 One advice for compressing before
Compression storing and one for uncompressing

data when needed.

Battery Opt.
Caching 1 One for caching before sending data

through the network .
Adaptive 1 Decreases backlight.
Backlight
CPU Freq. 1 Decreases CPU speed.

Bandwidth Opt.
Data 2 One advise for compressing before
Compression sending data and one for uncompressing

upon reception.
Encryption 1 Changes the encryption algorithm.
Algorithm

Table 2 shows the aspects, policies, number of advices per policy and a brief
explanation about their behavior. As we mentioned before, policies should be (de)
activated as needed. When a policy is implemented by more than one advice, the
group of advices needs to be managed at once. In table 2 such policies have a number
of advices greater than one (column Adv. #).

3.4. Requirements

For the sake of modularisation, it is good to model each optimisation concern as an
aspect. Each of these aspects would have several advices, each (or groups) of them
implementing some of the proposed policies. As we have seen, each policy affects
resources in its own way.

We want to have an adaptive system where conflicting policies are deactivated
(at least those needed for removing a conflict). So, the required granularity for
conflict resolution is the policy which, at the implementation level, is mapped to
an advice. Therefore, we conclude that aspectual behaviour coordination should be
performed at advice level.

Note that resource awareness policies may be split along several advices and
methods. One advice may cope with some part of the optimisation policy, and others
can complete the work started by the first one. In our previous example, the battery
optimiser captures some data before it is actually sent through the network, and
when the buffer is full, it sends all data; this behaviour can be clearly divided in two
parts, one is the advice which captures data and the other, a method or advice where
data is actually dispatched to the network. Therefore we need to manage groups of
related advices and methods, this is another important requirement. To summarise,

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

A Fine Grained Aspect Coordination Mechanism 9

1 @AffectsMemory(CONSUMED)

2 @AffectsBattery(RELEASED)

3 public aspect BatteryOptimiser

Listing 1. Excerpt of an annotated Aspect

the requirements for a conflict resolution mechanism in resource awareness are the
following ones:

• To be capable of handling semantic conflicts based on runtime context.
• To solve conflicts at aspect granularity.
• To solve conflicts at advice granularity.
• To solve conflicts for groups of advices which implement a policy (group gran-

ularity).

Additionally, from the software ilities perspective we desire to keep aspects
independent in order to facilitate its reuse, to allow the programmer to express
the semantic of new aspects (comprehensibility and extensibility), and to keep the
coordination behaviour modularised for evolvability.

3.5. Design

Figure 2 shows the components involved in the the proposed solution. Aspects (1)
are enriched with metadata (2) indicating how they affect the resources (3) – which
are shared by the base system and the aspects. Such metadata is added through
annotations; we call them semantic labels. Each semantic label denotes a resource
and an effect that the tagged aspect has on the resource. Having such semantic
information allows us to write coordination logic for aspects. Coordination logic is
expressed in rules, that indicate which aspect(s) must be (de)activated according to
the current state of resources. But, instead of referring them by their names, rules
use semantic labels. We show how they are used in the implementation section. The
combined use of labels and rules for controlling aspects, avoid the coupling between
aspects themselves and between rules and aspects. There is a coordination module
(4) which takes care of monitoring the resource states (5) and evaluating the rules
as necessary.

3.6. Implementation Considerations

In order to provide advice level control we extended our previous work so that
annotations containing semantic information can be applied to advices and group
of advices. When an aspect is instantiated, it is scanned looking for semantic labels.
The semantic information found in the aspects is used to feed our coordination
module, as depicted in figure 2. Code listing 1 shows how an aspect code looks like
when semantic labels are present.

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

10 Arturo Zambrano, Silvia Gordillo, Johan Fabry

Figure 2. Aspects with their metadata (semantic labels) as comments, and coordination module.

1 when

2 m : Resource(name == "memory",

3 availability < MEM_LIMIT)

4 b : Resource(name == "battery",

5 availability < BATT_LIMIT)

6 then

7 Coordinator.stopConsumersOf("memory");

Listing 2. A simple rule for controlling aspects. This rule solves the conflict between Memory

Optimiser Policy 1 and Battery Optimiser Policy 1

The inspection of semantic labels is carried out using the annotation reflection
mechanism provided by Java. The scope of a semantic label is limited to the element
where it is applied (that is aspect, advice or advice group). Aspectual semantic
information is organised during loading time, so aspects and individual advices can
then be easily referenced. In order to provide flexibility for expressing the rules, we
decided to use a rule engine, we choose JBoss Drools [1] as it is a mature engine
which allows for the definition of new rule languages – this feature can be used to
develop rule languages targeted at specific domains..

Conditions, in our rules, contain expressions which refer to the execution context
(for instance the availability of some resource). Actions express operations to be
carried out on aspects, advices or group of them. For example, the code listing 2
shows a very simple rule written using JBoss Drools syntax. Lines between keywords
when and then indicate a condition that should be satisfied in order to execute
de code after the keyword then. Thes rule in Listing solves the conflict between
Memory Optimiser(3.2.1) Policy 1 and Battery Optimiser (3.2.2) Policy 1, in this
case favouring power management over memory usage .

The execution context is monitored, when a resource state changes, these

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

A Fine Grained Aspect Coordination Mechanism 11

Table 3. Annotations, meanings and parameters for the running example. Note that new annota-

tions can be defined to indicate affects on new resources.

Annotation Meaning Parameters
@Group denote the advice as part of a group the name of the group
@AffectMemory indicates the advice or aspect Release or Consume

affects memory availability
@AffectBandwidth indicates the advice or aspect Release or Consume

affects bandwidth
@AffectPower indicates the advice or aspect Release or Consume

affects battery power
@AffectProcessor indicates the advice or aspect Release or Consume

affects CPU cycles

changes are asserted into the rule engine, and coordination rules are (re)evaluated
as necessary. According to the execution context, aspects and advices are activated
or deactivated by the rules. Conflicts are avoided, since aspects or advices are active
only if the execution context provides the right conditions.

In order to satisfy the requirements stated in 3.4, semantic labels can be applied
to aspects, advices or groups of advices. So, when a rule express some action on
a given role (for example switch off memory consumers) it affects the behavioural
elements mentioned before. Note that the rule presented above does not (explicitly)
reference any aspect or advice. It just refers to the role played by behavioural
elements (for instance memory consumer).

3.6.1. Groups of Advices

For this work we introduce advice and group level coordination based on semantic
labels. As semantic labels are annotations, aspect and advice scope is provided by
the language support. In order to define groups of advices for coordination purposes,
we provide a new annotation. The @Group annotation allows the developer to denote
several pieces of behaviour as belonging to the same conceptual unit (an optimisa-
tion policy in our case). For example, an advice can be enriched with the group id
which it belongs to: @Group(“NetworkBuffering”). Semantic labels found in any
member of the group are assumed to be applicable to all the group. Our @Group

annotation is a workaround that manifests the need for other aspect composition
facilities. Our intention is to provide the flexibility for expressing the policies and
coordinate them.

Advice and group level annotations can override aspect level annotations. In
contrast, advice annotations cannot override group level ones. Single annotated ad-
vices and groups are equivalents, since they are the implementation of a policy

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

12 Arturo Zambrano, Silvia Gordillo, Johan Fabry

1 @AffectsMemory(ResourceUsageType.RELEASED)

2 public aspect MemoryOptimiser extends ResourceOptimiser {

3 // pointcut definitions

4 @Group(‘‘DataCompression ’’)

5 @AffectsProcessor(ResourceUsageType.CONSUMED)

6 void around(BaseSystem system): usage(system) {

7 // compress data code ();

8 }

Listing 3. Aspect with advice annotations

– a policy may be implemented as one or many advices. So, trying to override
group level annotation is similar to having two contradictory annotations on the
same advice (which makes no sense). For example, in the previous explained ex-
ample of a networking optimisation formed by two advices – one caching data and
the other sending it when it is necessary – , the whole policy must be tagged as
@AffectMemory(CONSUME), it makes no sense to override this for the advice which
sends the data (as @AffectMemory(RELEASE)), since whole policy is a memory con-
sumer.

As labels are applied to any advice of the group and as valid considered for
whole group, it is necessary to choose where to apply them, it seems reasonable to
choose the more significant piece of behaviour (the most important advice in the
group), in this case that which actually caches data.

So, if most advices of an aspect need the same annotation it can be defined at
aspect level and redefined for the advice which does not follow the pattern.

Table 3 shows the annotations used for denoting aspects effects (just for the
examples mentioned in this work) on resources (semantic labels) and the annotation
for grouping. New semantic labels can be added to express effects on new resources
which need to be taken into consideration.

Code listing 3 shows an aspect where annotations have been applied at aspect
and grouplevel. Note that the group level annotation (line 5) complements the
information asserted by the aspect annotation.

3.7. Tool Considerations

The current prototype is implemented in Java and AspectJ [3], and relies on JBoss
Drools [1] as the rule engine. The use of these widespread tools, provide us with
the possibility of testing it in a variety of environments. This is part of our future
work.

The current version of our prototype depends heavily on the ability of the lan-
guage to attach metadata to objects (aspects in our case). This approach could also
be used in languages where such support is not available, an alternative implemen-
tation could rely on expressing metadata for aspects in a separate file (let say an
XML file which describes the metadata for aspects and advices). Such alternative
implementation would negatively affect the comprehensibility of the aspectual view

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

A Fine Grained Aspect Coordination Mechanism 13

of the system, since aspects and its corresponding metadata would be physically
separated. Another feasible approach would be including the semantic information
in the comments, as it can be done using XDoclets [2].

The tools used for our proof of concept do not allow us to deploy aspects dy-
namically. Such a feature would certainly improve the adaptability (see section 4.1),
letting us weave new aspects or unweave those which are known to be unnecessary.

4. Implications of our Approach

In this section we briefly review how this approach impacts on several properties of
software. Note that the presented approach works for non-core functionality aspects,
for sure that de-activating some core functionality would break requirements of our
system.

4.1. Adaptability

The main objective of the aspect coordination approach we present here is to get
context-based adaptability for aspects. As the system state evolves, it is monitored
and aspects are activated according to the current context. Aspect behaviour is
not actually adapted, instead, those aspects that are most appropriate for a given
context are activated, and those which are potential source of conflict (in such a
context) are deactivated.

4.2. Evolvability

Evolvability is the ability of a software artifact to cope with new requirements (or
changes in the existing ones). Having the aspects separated from the conditions that
must be met for running them, helps evolve these two concerns in an orthogonal
way. Assuming there is a system which is working using the presented approach, if a
new optimiser must be added, instead of checking all the needed runtime conditions
in the aspect’s code, it is sufficient to tag it properly and the rules will do the rest.
On the other hand, if there is a new coordination requirement like when the user is
doing heavy processor tasks, bandwidth cannot be optimised using data compression,
since it consumes a lot of processor cycles, this new constraint can be added adding
a new coordination rule, without altering any optimiser aspect.

The presented approach allows for an improved evolution of the whole system,
specially for aspects. Aspects containing the logic of the crosscutting concerns are
separated from the conditions which indicates if they should or should not be ap-
plied. Encapsulating such conditions in rules allows us to coordinate the behaviour
of the whole system without touching aspects’ source files. Adding new rules or
modifying such conditions does not involve recompiling the aspects and weaving
the system.

Another interesting effect of this approach is that rules can handle new aspects
without the need of being recompiled, because they refer to the role of aspect. When

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

14 Arturo Zambrano, Silvia Gordillo, Johan Fabry

1 aspect MemoryOptimiser

2 pointcut usage: (@where) &&

3 if(Battery.remaining()> LOWER_BATTERY_LIMIT)

Listing 4. Memory Optimiser aspect code, coupled variant 1.

1 aspect MemoryOptimiser

2 pointcut usage: (@where) &&

3 if(BatteryOptimiser.isInLowestLimit ())

Listing 5. Memory Optimiser aspect code, coupled variant 2.

1 /* import ... */

2 @AffectsMemory(ResourceUsageType.RELEASED)

3 @AffectsBandwidth(ResourceUsageType.CONSUMED)

4 public aspect MemoryOptimiser extends ResourceOptimiser{

5 pointcut usage(BaseSystem system): target(system)

6 && call(public void BaseSystem.systemUse (..));

7 public MemoryOptimiser () { /* ... */}

8 void around(BaseSystem system): usage(system){

9 /* makes system buffers flush */

10 }

11 }

Listing 6. Memory Optimiser aspect code, final version

a new aspect is added, it needs to be conveniently tagged, and that is enough for
the coordination mechanism to handle it.

4.3. Reusability

Consider the example shown in section 2.2, where the MemoryOptimiser aspect
cannot run if there is low battery power remaining (in this case BatteryOptimiser
is more important). Writing aspects that deal with such situations by themselves
compromise their reusability. For example, the MemoryOptimiser could look like
code listing 4. Note that in this case MemoryOptimiser is being coupled to the
battery power management logic, this is because it cannot run under certain power
conditions. Another possibility would be to ask the BatteryOptimiser aspect as
shown in the code listing 5. In any case the reusability of the MemoryOptimiser is
affected since parts of their code refer to the battery management code. Specifically,
in the second case the MemoryOptimiser aspect cannot be compiled without the
BatteryOptimiser.

In the approach we present the MemoryOptimiser aspect does not refer to the
BatteryOptimiser (or other aspects), neither check if it is possible to run according
to the remaining battery power. As it is shown in listing 6 our MemoryOptimiser
code is clean of references to other aspects, it just indicates how resources are used

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

A Fine Grained Aspect Coordination Mechanism 15

by it. Every check regarding resource states is contained in the coordination rules,
which are separated from aspect’s code. In this way aspect reusability is improved,
since coordination behaviour is completely decoupled from them. Therefore, every
aspect is independent from each other, allowing aspects to be reused independently.
Besides this, rules might be reused independently of aspects, since they have no
direct references to aspects. A rule can handle any aspect correctly enriched with
the metadata it needs.

4.4. Comprehensibility

Comprehensibility can be arguably compromised. On the one hand, it can be said
that having aspects separated from code conditioning its execution affects negatively
the comprehensibility of them, that is, reading an aspect source file it is not possible
to know when its advices will actually be executed. On the other hand, it can be
said that aspects remain correctly modularised and the inter aspect coordination
concern has been factored out, so coordination rules are expressed separately. If
the developer needs to read the implementation of a crosscutting concern, he/she
should read the aspect’s source file. If, besides this, she/he needs to understand the
coordination schema, it is necessary to read the rules, which are not spread along
aspects.

Comprehensibility of the aspects is improved as semantic information is also ex-
pressed in the aspects. This information allows the source code reader to understand
the effects of the aspect in the base system.

4.5. Modularity of Coordination Concern

As we discussed in section 4.3, if each aspect implements the necessary checks to
ensure that runtime conditions are the expected for its execution, the resulting code
would be tangled with the coordination behaviour. This is because the coordination
concern is inherently crosscutting: the necessary conditions for running a given
resource optimiser, are a combination of the resource states.

Our coordination module (see fig. 2) is in charge of monitoring resources and
controlling the execution of aspects (or advices/groups), in this way aspect does not
contain coupling code as shown in listings 4 and 5 It can be argued that metadata
indicating aspects roles is, in a way, part of a crosscutting concern spread along
aspects. On the other hand it is possible to inject the annotations using intertype
declarations in this way the optimisers code will be clean of labels.

4.6. Extensibility

New semantic information can be added by defining new annotations (following
certain conventions), then this information is available for the definition of new
coordination rules. As we said before, new aspects are automatically coordinated
provided they have been conveniently annotated.

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

16 Arturo Zambrano, Silvia Gordillo, Johan Fabry

4.7. Scalability

Scalability has yet to be studied. There is no explicit limit for the amount of aspects
or semantic labels that can be handled. In our opinion, the key factor for tuning
performance is the number of rules and how often they are evaluated.

5. Related Work

In this section we review some related work as an attempt to determine the position
of this work among others in the area of aspect interactions.

In [17], Sanen et al. present a classification of aspect interactions, which includes:
conflicts (semantical interference), dependencies (aspects that need other aspects),
reinforcement (aspects influencing correct working of others) and mutex (interaction
type of mutual exclusiveness). Our work is oriented to the conflicts category, and
writing the correct rules it could be applied to get mutual exclusion for aspects.

Douence et al. [10] propose a theoretical analysis framework to detect conflicts.
In that work, aspects interactions can be detected through static analysis of the
joinpoints. When conflicts are detected they can be solved by specifying the desired
composition. Our approach does not depend on the fact of having aspects working
on the same joinpoints.

Tessier et al. present, in [21], a model-based methodology which allows the de-
tection of direct conflicts between aspects. In that work a taxonomy of conflicts
is presented; the categorisation includes Crosscutting Specifications, Aspect-Aspect
Conflicts, Base-Aspect Conflicts and Concern - Concern Conflict. Our work can be
framed by the last of these categories, in particular by the subcategory Inconsistent
Behaviour, that refers to conflicts where one aspect can alter the state used by other
aspects. While Tessier’s work is oriented to detection and resolution of conflicts by
the developer in early stages of software life cycle, ours is aimed at solving conflicts
at runtime.

Whittle et al. [22] discuss how to cope with some aspectual conflicts in model-
driven approach. This work describes heuristics to drive the composition and solve
conflicts. Such directives can define precedence between aspects; rename, add or
delete model elements. Despite the fact that this approach is intended to work at
the model level, and ours is for runtime, it is possible to get similar effect (adding
and removing behaviour) based on the execution context.

Bergmans [5] proposes the use of annotations as a means of detecting conflicts
among cross-cutting concerns. In his approach, conflicts can be detected when mul-
tiple concerns works on the same joinpoint. As we previously said, our work aims to
solve conflicts arising even when the aspects involved work on different joinpoints.

Tanter et al. [20] propose the extension of aspect languages in order to support
the notion of context. They present different examples of context, and show how
aspects can make use of contextual information for their activation. Both works
are similar regarding the use of runtime context, but they differ in that the ap-
proach presented by Tanter is more expressive, since contexts are first class entities,

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

A Fine Grained Aspect Coordination Mechanism 17

allowing them to refer to context in pointcut expressions. In contrast, our “con-
text dependent” expressions (rules) reside separately, which allow them to evolve
independently from aspects.

As discussed in [13] by Kiczales et al. annotations are very useful for describ-
ing what is true about jointpoints (these kind of annotations are called there
annotation-property). In our case, we use annotations to denote the effect of as-
pects on the system. Since they represent semantic (and design) information we
decided to keep them tied to aspects.

As far as we are concerned, no work has been performed on the resolution of
semantic conflicts at runtime.

6. Conclusions and Future Work

Conflict resolution is still an open issue for the AOSD community. Mechanisms for
handling interactions between aspects provided in languages, such as AspectJ, leave
much room for improvement.

In this paper, we have presented an extension of a mechanism for coordinating
aspects’ behaviour in order to avoid or solve conflicts, based on semantic informa-
tion. This mechanism enables a fine grained control of the aspectual behavioural
elements. We have discussed the impact of the approach under the light of some
interesting software properties. It has been explained how this approach provides a
flexible coordination behaviour while maintaining aspects independence. From the
point of view reusability and evolvability, we have shown that this approach helps
to use and evolve aspects and coordination behaviour in a separated way. What is
more, having aspects enriched with semantic metadata improves its comprehensi-
bility. From this analysis we conclude that the presented approach delivers more
advantages than drawbacks and that it deserves further study. Part of our future
work involves studying if this kind of mechanisms can be embedded in domain
specific aspect languages, and analysing the possible benefits of such integration.
Having an aspect language tailored for a given domain, would allow to reason about
aspect interactions, improving interaction detection and resolution capabilities. Fur-
thermore, domain specific conflict resolution strategies can be built into the aspect
language.

Bibliography

[1] Jboss rules engine. http://www.jboss.com/products/rules.
[2] Xdoclet: Attribute-oriented programming. http://xdoclet.sourceforge.net.
[3] AspectJ project.

http://www.eclipse.org/aspectj/.
[4] S. Bakre and T. Elrad. Scenario based resolution of aspect interactions with aspect

interaction charts. In AOM ’07: Proceedings of the 10th international workshop on
Aspect-oriented modeling, pages 1–6, New York, NY, USA, 2007. ACM.

[5] L. M. J. Bergmans. Towards detection of semantic conflicts between crosscutting

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

18 Arturo Zambrano, Silvia Gordillo, Johan Fabry

concerns. In J. Hannemann, R. Chitchyan, and A. Rashid, editors, Analysis of Aspect-
Oriented Software (ECOOP 2003), July 2003.

[6] S. Casas, C. Marcos, V. Vanoli, H. Reinaga, L. Sierpe, J. Pryor, and C. Saldivia.
Administración de conflictos entre aspectos en aspectj. In Proceedings of the Fourth
Argentine Symposium on Artificial Inteligence, pages 1–11, 2005.

[7] A. Dantas and P. Borba. Developing adaptive J2ME applications using AspectJ.
In Proceedins of VII Brazilian Symposium on Programming Languages, SBLP 2003,
pages 226–242, May 2003.

[8] A. Dey. Understanding and using context. In Personal and Ubiquitous Computing
Journal, volume 5, pages 4–7, 2001.

[9] R. Douence, P. Fradet, and M. Südholt. A framework for the detection and reso-
lution of aspect interactions. In 1st Conf. Generative Programming and Component
Engineering, volume 2487 of lncs, pages 173–188, Berlin, 2002. Springer-Verlag.

[10] R. Douence, P. Fradet, and M. Südholt. Composition, reuse and interaction analysis
of stateful aspects. In K. Lieberherr, editor, Proc. 3rd Int’ Conf. on Aspect-Oriented
Software Development (AOSD-2004), pages 141–150. ACM Press, Mar. 2004.

[11] R. E. Filman and D. P. Friedman. Aspect-oriented programming is quantification and
obliviousness. In R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-
Oriented Software Development, pages 21–35. Addison-Wesley, Boston, 2005.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Akşit and S. Matsuoka, editors, 11th
Europeen Conf. Object-Oriented Programming, volume 1241 of LNCS, pages 220–242.
Springer Verlag, 1997.

[13] G. Kiczales and M. Mezini. Separation of concerns with procedures, annotations,
advice and pointcuts. In A. P. Black, editor, ECOOP, volume 3586 of Lecture Notes
in Computer Science, pages 195–213. Springer, 2005.

[14] M. Monga, F. Beltagui, and L. Blair. Investigating feature interactions by exploiting
aspect oriented programming. Technical report, Dip . Elettronica e Informazione;
Politecnico di Milano, 2003.

[15] D. Preuveneers and Y. Berbers. Towards context-aware and resource-driven self-
adaptation for mobile handheld applications. In Y. Cho, R. L. Wainwright, H. Had-
dad, S. Y. Shin, and Y. W. Koo, editors, SAC, pages 1165–1170. ACM, 2007.

[16] J. Pryor and C. Marcos. Solving conflicts in aspect-oriented applications. In Fourth
Argentine Symposium on Software Engineering, 2003.

[17] F. Sanen, E. Truyen, B. D. Win, W. Joosen, N. Loughran, G. Coulson, A. Rashid,
A. Nedos, A. Jackson, and S. Clarke. Study on interaction issues. Technical Report
AOSD-Europe Deliverable D44, AOSD-Europe-KUL-7, Katholieke Universiteit Leu-
ven, 28 February 2006 2006.

[18] W. Sousan, V. Winter, M. Zand, and H. Siy. Ertsal: a prototype of a domain-specific
aspect language for analysis of embedded real-time systems. In DSAL ’07: Proceedings
of the 2nd workshop on Domain specific aspect languages, page 1, New York, NY,
USA, 2007. ACM.

[19] É. Tanter. Aspects of composition in the reflex aop kernel. In W. Löwe and
M. Südholt, editors, Software Composition, volume 4089 of Lecture Notes in Com-
puter Science, pages 98–113. Springer, 2006.

[20] É. Tanter, K. Gybels, M. Denker, and A. Bergel. Context-aware aspects. In Pro-
ceedings of the 5th International Symposium on Software Composition (SC 2006), at
ETAPS 2006, Mar. 2006.

[21] F. Tessier, M. Badri, and L. Badri. A model-based detection of conflicts between
crosscutting concerns: Towards a formal approach. In M. Huang, H. Mei, and J. Zhao,

April 27, 2010 11:50 WSPC/INSTRUCTION FILE Conflicts

A Fine Grained Aspect Coordination Mechanism 19

editors, International Workshop on Aspect-Oriented Software Development (WAOSD
2004), Sept. 2004.

[22] J. Whittle, J. Araújo, and A. Moreira. Composing aspect models with graph transfor-
mations. In EA ’06: Proceedings of the 2006 international workshop on Early aspects
at ICSE, pages 59–65, New York, NY, USA, 2006. ACM Press.

[23] A. Zambrano, S. E. Gordillo, and I. Jaureguiberry. Aspect-based adaptation for ubiq-
uitous software. In F. Crestani, M. D. Dunlop, and S. Mizzaro, editors, Mobile HCI
Workshop on Mobile and Ubiquitous Information Access, volume 2954 of Lecture
Notes in Computer Science, pages 215–226. Springer, 2003.

[24] A. Zambrano, T. Vera, and S. Gordillo. Solving aspectual semantic conflicts in re-
source aware systems. In W. Cazzola, S. Chiba, Y. Coady, and G. Saake, editors,
Third ECOOP Workshop on Reflection, AOP and Metadata for Software Evolution,
Nantes, France, 2006.

