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a b s t r a c t

Dynamic deployment of aspects brings greater flexibility and reuse potential, but
requires a proper means for scoping aspects. Scoping issues are particularly crucial in a
distributed context: adequate treatment of distributed scoping is necessary to enable the
propagation of aspect instances across host boundaries and to avoid inconsistencies due to
unintentional spreading of data and computations in a distributed system.

We motivate the need for expressive scoping of dynamically-deployed distributed
aspects by an analysis of the deficiencies of current approaches for distributed aspects.
Extending recentwork on scoping strategies for non-distributed aspects,we then introduce
a set of high-level strategies for specifying locality of aspect propagation and activation, and
illustrate the corresponding gain in expressiveness. We present the operational semantics
of our proposal using Scheme interpreters, first introducing a model of distributed aspects
that covers the range of current proposals, and then extending it with dynamic aspect
deployment and scoping strategies. This work shows that, given some extensions to their
original execution model, scoping strategies are directly applicable to the expressive
scoping of distributed aspects.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the pointcut-advice model of aspect-oriented programming [17,32], as embodied in e.g. AspectJ [12], crosscutting
behavior is defined by means of pointcuts and advices. A pointcut is a predicate that matches program execution points,
called join points, and an advice is the action to be taken at a join point matched by a pointcut. An aspect is a module that
encompasses a number of pointcuts and advices. The scope of an aspect is the set of join points the aspect sees, i.e., against
which its pointcuts are matched.

A major challenge in aspect language design is to clearly and concisely express where and when aspects should apply.
If aspects potentially see any join point, expressive pointcut languages are the only way to restrict the scope of aspects.
However, as repeatedly recognized [1,8,18,25], this can lead to complex pointcut definitions and sacrifices the reuse
potential of aspects.

In a distributed system, a newdimension for scoping appears: dealingwith the different execution hosts. Distributed AOP
can be achieved by combining a normal aspect language like AspectJ with a formof remote procedure call, but this has severe
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limitations. To tackle these limitations, several distributed aspect languages and frameworks have been proposed [3,19,29].
In these proposals, however, aspect deployment is still done statically; leaving the burden of proper scoping to cumbersome
pointcut definitions. In addition, if deployment is not done properly, incompatibility errors or unexpected (non-)application
of aspects can occur. These issues, along with related work, are further discussed in Section 2.

Expressive scoping of dynamically-deployed aspects, as partially supported by several languages like CaesarJ [1] and
AspectScheme [9], is therefore required for distributed aspect-oriented programming. Recently, Tanter has proposed scoping
strategies as a general model for controlling the scope of adaptations in programs [25,26].1 Applied to aspects, scoping
strategies supersede other proposals by giving programmers very fine-grained control over the scope of an aspect. However,
thismodel does not take distribution into account. This paper explores the issue of expressive scoping of distributed aspects,
allowing advanced distributed scoping strategies to be conveniently expressed. Examples are aspects that propagate only
on certain hosts, or that ‘‘follow’’ particular objects as they are sent over the network. We further illustrate such scenarios
in Section 2.4 and show the shortcomings of current AOP languages with distribution support in Section 3.

To address the issue of expressive scoping of distributed aspects, we introduce a set of high-level strategies that specify
the locality of aspect propagation and activation, complementing the existing proposal of scoping strategies. Necessary
background on this previous proposal is presented in Section 4. As a first step, a sequential model of aspects is built on,
as a base language, a prototypical sequential higher-order procedural language. This model is made operational through
the definition of a progressively-extended Scheme interpreter. The model is then complemented with scoping strategies.
Section 5 extends the sequential model of Section 4 and its definitional implementation with distribution. Section 6 starts
by giving an informal presentation of distributed scoping strategies and shows how they concisely express the scenarios
considered in Section 2.4. It then dives into scoping strategies in a distributed setting, expounding the semantics of our
proposal. Section 7 revisits the scenarios example with our language and discusses why none of the limitations identified
with other proposals apply. Section 8 discusses several implications of the work in particular with respect to the weaving
approach and its relation to code consistency in a distributed system. Section 9 concludes.

2. The case for dynamic deployment of distributed aspects

The distribution and scoping features of existing models used for aspect-oriented programming of distributed
applications can roughly be classified into three categories:

1. No explicit mechanisms for distribution are provided but a local aspect model is used to manipulate an underlying
distributed infrastructure. Examples of this category comprise AspectJ [12], applied to RMI-based applications, as well as
JBoss AOP and Spring AOP, applied to Enterprise JavaBeans applications. Aspects essentially have global scope in these
models, a notable exception being aspects instantiated only on creation of base entities, such as AspectJ’s feature for
per-target or per-cflow instantiation.

2. The localization of join points can be explicitly referred to in order to make aspects, in particular pointcut matching,
distribution-aware. These are the main characteristics of the models of remote pointcuts [19], Aspects with Explicit
Distribution (AWED) [2,3], DyMAC [14], and ReflexD [29]. Note that, while these models are mostly static, some of
them contain dynamic mechanisms (e.g. AWED allows host groups to be modified dynamically). In addition to the
scoping features of the previous category, these models also partially include explicitly-defined distributed scopes (e.g.,
deployment on groups of hosts in AWED and ReflexD).

3. Mechanisms that allow aspects to be deployed on entities of the base application such that the scope of aspects is
implicitly limited to occurrences of distributed join points that are generated by the execution of those entities. For
example, CaesarJ [1], allows aspects to be deployed dynamically such that they are only triggeredwithin the (distributed)
control-flow of certain method calls.

2.1. Issues with static deployment

In most aspect languages, aspects are deployed statically, i.e., before execution time, and have global scope. Restricting
the scope of an aspect can only be done by introducing extra conditions in the pointcut definitions. This however renders
pointcut definitions unnecessarily complex and sacrifices the reuse potential of aspects [1,8,18,25]. Moreover, the exact
dynamic patterns underwhich an aspect should be effectivemay be very hard or impossible to foresee and express statically
in the aspect definition.

In a distributed setting, static deployment of aspects with global scope is even more problematic, because the mere
notion of ‘‘global’’ is not necessarily straightforward to define. Consider a case where AspectJ is used in conjunction with
RMI. Static weaving creates new versions of the potentially impacted classes, which then have to be loaded on all the hosts in
a consistent way. If not, a problem occurs when a host has loaded the aspect-free version of a class and receives an instance

1 In its first presentations [25,28], themodel is called deployment strategy, butwe now find it clearer to separate the notion of deployment of an adaptation
(which can be realized through different means), from the scoping strategy that specifies the scope of the deployed adaptation [26].



É. Tanter et al. / Science of Computer Programming 75 (2010) 1235–1261 1237

of the woven version of the same class. Two equally unsatisfactory scenarios are possible: either a class version exception
is thrown, or the aspect does not apply.2

The above issue is not the sole issue: such approaches cannot directly express relationships between different distributed
entities [19]. As a consequence, pointcuts that relate join points, like cflow, will not work in a distributed setting. To address
this, several aspect languages with explicit distribution features have been proposed. These languages are more robust and
expressive than a simple combination of an aspect language and a middleware for distribution. DJcutter [19], for instance,
introduced the idea of discriminating join points based on their host of occurrence and thus solves the distributed control
flow problem; some, like ReflexD [29], give flexible control over the placement of advice instances in the system or, like
AWED [2], make it possible to exploit causal orderings between join points on different hosts.

These distributed aspect systems typically offer programmatic means to specify aspect deployment, more convenient
than ad-hoc startup-time code. But—apart from CaesarJ, discussed below—deployment in these languages remains an
activity that has to be specifiedwithout referring to run-time information, such that aspects are deployed on all hosts where
they may potentially apply. If not, aspects may not apply when expected.

2.2. Dynamic deployment of aspects

Dynamic deployment of aspects addresses the issues of static deployment by avoiding the cluttering of pointcut
definitions with cumbersome dynamic conditions. It augments the reuse potential of aspects by allowing certain scoping
decisions to be deferred to aspect deployment time.

Some approaches offer dynamic deployment with global scope [1,9], however the semantics of this mechanism in
presence ofmulti-threaded programs is unclear. In contrast, several structured dynamic deploymentmechanisms have been
provided, with clearer semantics. For instance, both CaesarJ and AspectScheme [9] support a dynamically-scoped (thread
local) deployment construct, like deploy(asp){block}, whereby the aspect instance asp sees any join point produced in the
dynamic extent of the execution of block. AspectScheme also supports statically-scoped deployment, in which the aspect
instance asp sees any join point produced lexically in the body of block (including in future applications of functions that
may escape the block). This resembles per-object deployment [1,22], like deploy-on(obj,asp), whereby asp sees any join
point that occurs in the context of the object obj.

To unify and subsume all these variants of scoping semantics for dynamically-deployed aspects, Tanter has proposed
scoping strategies [25]. A scoping strategy specifies the scoping of an aspect through three components: how it should
propagate on the call stack (dynamic scoping dimension), how it should propagate along created procedural values (static
scoping dimension), and if the pointcuts of the aspect should be refined locally for a given deployment. These components
are themselves pointcuts. For instance, consider the following (artificial) travel booking example:Wewish to use a general-
purpose logging aspect log to log all modifications of dates of an existing reservation. Such modifications only happen in
calls to Reservation objects with a Date parameter. Also, this will never happen beyond the database facade DBAccess. The
following code deploys log over execution of block:
deploy[!target(DBAccess),target(Reservation),

if(argOfType(Date))](log){ block }

The scoping strategy specifies that (a) the aspect sees all join points in the dynamic extent of the block except when
the target of a call is of type DBAccess; (b) the aspect is captured in all created Reservation objects so that it will see join
points produced in their context, even if they happen outside of the dynamic extent of the block; (c) logging is refined to
apply only if a join point has an argument of type Date. Scoping strategies subsume existing proposals and enhance aspect
reusability by giving fine-grained control over the scope of dynamically-deployed aspects (previous work [25] details why
scoping strategies cannot be expressed with a combination of other existing aspect scoping mechanisms). Furthermore,
scoping strategies are applicable to variable bindings, as well as other kinds of program adaptations than aspects [26]. The
expressiveness of scoping strategies (in terms ofmacro-expressibility [10]) for variable bindings is discussed elsewhere [26].

2.3. Dynamic distributed aspect deployment

CaesarJ is the only aspect language with dynamic deployment that supports distribution to some extent. Beyond global
deployment, CaesarJ supports a structured form of dynamic deployment, on a distributed control flow. The advantage of
this solution over static deployment approaches is that the aspect is automatically deployed on the control flow in remote
hosts as needed. This avoids the different problems mentioned in Section 2.1.

Distributed per-thread deployment is however but one point in the design space of distributed aspect scoping semantics
(per-this deployment in CaesarJ only works locally). Conversely, scoping strategies cover that space, but are formulated in
a non-distributed context. This work therefore explores support for expressive scoping of distributed aspects, by proposing
means to augment the power of scoping strategies to express distribution-related constraints on the scope of deployed
aspects.

2 Technically, in Java RMI, this depends on whether or not the affected class declares a consistent classVersionUID field in both hosts. If so, the aspect
does not apply. Otherwise, classes from both hosts are considered incompatible [23].
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class TravelService {
...

Booking bookPackage(FlightSpec fsp, RoomSpec rsp,
Traveler trv, Selector sel){

FlightsInfo ft = DBAccess.current.reserve(trv,fsp);
RoomsInfo rm = hotelService.reserve(trv,rsp);
Reservation res = sel.pick(ft,rm);
return confirm(res);

}

Booking confirm(Reservation res){
... confirm the reservations ...

... obtain weather information ...

... complete travel info and return ...

}
}

Fig. 1. Section of the travel service: booking of a package.

2.4. Expressive scoping scenarios

We now present several distributed scenarios for which existing languages provide insufficient deployment support. We
informally describe a number of scoping strategies that solve these scenarios. Section 3 discusses our attempts to implement
these scenarios using AspectJ, CaesarJ and AWED, showing where all of these languages fall short.

Running example. As a running example we consider a typical client-server system for travel agents. Travel agents use the
client application to book travel packages that include a flight and hotel reservation. The travel server application handles
flight booking locally, but delegates hotel reservations to a secondary booking server of another company. As a courtesy, the
typical climate conditions for the destination at that time are also supplied to the traveler. For this a free weather service is
used.

To book a package, the travel agent specifies constraints on flights and hotels, and sends a request to the travel server.
The travel server gathers candidate reservations and sends these to the client using a callback. This allows a combination of
reservations to be selected: the travel agent picks items from a list, and these are returned to the server. An outline of the
travel server code for this scenario is shown in Fig. 1. The trv and sel parameters of the bookPackage service contain relevant
information on the traveler and the object used as a callback to select reservations, respectively. Fig. 2 illustrates the reser-
vation confirmation phase, with deployment of a billing aspect (discussed next) and a privacy aspect (discussed in 2.4.3).

2.4.1. Case 1: Controlling propagation
In this system, we want to implement a Billing aspect, using an implementation of the wormhole pattern [13], to avoid

cluttering the parameter list of the different functions involved with an extra billing parameter. The implementation of this
aspect is shown below:

aspect Billing {
Bill bill = new Bill();
pointcut billMe(TravelInfo inf):

execution(* *.resConfirmed(TravelInfo)) && args(inf);
after(TravelInfo inf) returning: billMe(inf) {

bill.addItem(inf);
}

}

When confirming a reservation, the travel server as well as the booking server first verify if the candidate reservations
are still valid (e.g. they have not expired). To update their internal bookkeeping they then call a resConfirmed method on
themselves, the argument type of which is a superclass of FlightsInfo and RoomsInfo. The name and parameter list of this
method is fixed by convention, which allows the Billing aspect to apply.

The above example has some issues that should be addressed: (a) the aspect propagates to the free weather service,
where it will never apply; (b) in the travel server we know that behind the database facade DBAccess no resConfirmed call
will ever be made, so we should not propagate the Billing aspect beyond the facade. We therefore want to specify the
deployment to use a specific scoping strategy that cuts propagation at these points.

2.4.2. Case 2: Controlling activation
Suppose that performance information needs to be gathered from the client. We wish to reuse an existing Profiling

aspect (with a generic execution(* *.*(..)) pointcut). This requires the aspect to be deployed with a scoping strategy
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Fig. 2. Travel agent system with privacy and billing aspects deployed. The illustration focuses on the confirm phase, i.e., after the callback to the travel
client returned a specific reservation to confirm.

such that the entire control flow of the package booking front-end is captured. However we must exclude the computation
of the server, invoked through the bookPackage remote method.

Note that this strategy is not equal to simply stopping propagation at the host boundary. This is because there is a callback
from the server to the Selector object given as parameter to the bookPackage method. Recall that this callback shows a list
that allows the travel agent to pick among proposed reservations for a given package. We also want to gather profiling
information for this code.

2.4.3. Case 3: Controlling per-object activation
As a last example, consider the Traveler object passed to the travel service server. This object contains all the traveler

information the client has, including e.g. address and phone number. While this data cannot be modified due to lack of
setter methods, for privacy reasons the client may not reveal any sensitive information to untrusted hosts. The interface to
the different servers however must not be changed (e.g. to use a new restricted interface), so this feature is implemented
using a Privacy aspect as follows:
aspect Privacy {

pointcut protectMe() :
execution(String *.getAddress()) ||
execution(String *.getPhone()) || ... ;

String around() : protectMe() { return "N/A"; }
}

The aspect overrides selected getter functions (as indicated by ... in the pointcut) to return "N/A". It should only be active
when the object does not reside on a trusted host. Ideally this is defined by considering groups of hosts, e.g. a TravelGroup
that contains all hosts that are trusted. Therefore, the aspect should be active when outside of the TravelGroup.

In this scenario, we want the Privacy aspect to be embedded in all Traveler objects, which happen to be obtained from
a factory:

TravelerFactory fact = ...

Privacy priv = new Privacy();

Here, similarly to statically-scoped aspects in AspectScheme, we can deploy the aspect in the factory. The deployment of
a statically-scoped aspect implies that all objects created by the deployment target also have the aspect deployed. As a
consequence, all objects created by the factory also have the privacy aspect deployed. We however want a more specific
kind of deployment: the aspect should only propagate to Traveler objects created by the factory, not to all objects that the
factory creates. By being embedded in such Traveler objects, the aspect follows them as they are sent over the network, as
depicted on Fig. 2. In addition, the scoping strategy should specify that the aspect is only active outside the TravelGroup.

3. Tentative implementation

Having introduced the three scenarios thatwewish to support, we nowdetail howwe can attempt to implement these in
AspectJ (Section 3.1), CaesarJ (Section 3.2), and AWED (Section 3.3). Recall that the focus of this work is to provide expressive
scoping through the use of scoping strategies. Neither of these three languages have support for scoping strategies. We
therefore need to achieve the required behavior by including scoping in either the pointcut or the advice of the aspect.
Including scoping conditions in either of these will however reduce their reuse possibilities. We attempt to achieve the
highest reuse potential by limiting changes to the pointcut definitions, as well as by structuring these pointcuts with reuse
in mind. Nonetheless, the modification of pointcuts by adding extra conditions to yield similar scoping results is considered
a poor substitute, as discussed in Section 2.1 and [25]. In contrast, our proposal, introduced in Section 6, does concisely
express the strategies we desire.
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3.1. AspectJ implementation

The first hurdle we encounter in implementing the three scenarios is that AspectJ does not provide any support
for dynamic deployment, as we discussed in Section 2.1. This forces us to make the first major assumption in this
implementation:

A1:We need to be able to weave all affected classes and update them in a consistent way across the entire distributed
system. As this is a difficult problem,3 we fear that in practice this boils down to being able to stop, weave, and restart
the entire system.

3.1.1. Case 1: Controlling propagation
AspectJ does not provide for any control on propagation of aspects, as their scope is the entire woven system. As a result

we need to simulate propagation control by selectively activating the aspect, adding some extra condition to its pointcut.
This is performed by a toBill(inf) test, whose implementation we will discuss shortly, determining whether the aspect is
in scope or not.
aspect Billing {

after(TravelInfo inf) returning: billMe(inf) {
bill.addItem(inf);

}

pointcut billMe(TravelInfo inf):
execution(* *.resConfirmed(TravelInfo)) && args(inf) && if(toBill(inf));

[... toBill implementation ...]
}

The inScope() pointcut. There is an important downside to the above pointcut when considering reuse, which is that this
pointcut is tangled. It addresses two concerns: whether the aspect is in scope, and if so, whether it applies. Separating these
two concerns in two pointcuts, e.g. into billMe and inScope, would ease reuse of the aspect. In this setup only the inScope
pointcut needs to be changed if the scope is different. The following code achieves such a modularization:
aspect Billing {

after(TravelInfo inf) returning: billMe(inf) && inScope () {
bill.addItem(inf);

}

pointcut billMe(TravelInfo inf):
execution(* *.resConfirmed(TravelInfo)) && args(inf);

private pointcut inScope2(TravelInfo inf):
execution(* *.resConfirmed(TravelInfo)) && args(inf) && if(toBill(inf));

private pointcut inScope(): inScope2(TravelInfo);

[... toBill implementation ...]
}

Achieving the separation of the original pointcut and the scoping specification leads to code which is somewhat
convoluted, requiring an extra inScope2 pointcut. The goal of this last pointcut is to perform the toBill test. For this, it needs
to repeat the execution pointcut of billMe, purely to get the argument using args(inf). inScope2 however also needs to
declare the type of inf to be TravelInfo, yielding an inScope2(TravelInfo inf) signature. The goal of inScope is then to
simply hide the TravelInfo parameter from the inScope2 pointcut, abstracting away from these implementation details.

It is clear that the advantage in modularization comes at a cost of more code. We expect however that this extra code
will not cause much overhead at runtime as this is an easy case for optimization by the AspectJ compiler. Therefore, in the
remainder of this section we use such modularized pointcuts.

A distributed control flow pointcut. The toBill method should test whether the call to resConfirmed happens within the
distributed control flow of the confirm(res) call, excluding hosts outside the travel group, as well as the control flow
beyond the database facade. However, as the AspectJ cflow pointcut does not provide any support for distribution, there
is no straightforward way to implement this.

3 See [30] for a detailed introduction to atomic weaving of aspects in distributed systems.
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The implementation of a general distributed cflow construct for AspectJ is arguably non-trivial. We choose not to take
this route but instead implement the simplest solution for this specific case. Our solution relies on a property of the res
parameter of the confirm call: it contains all the TravelInfo objects that will be the arguments of the resConfirmed calls in
the control flow. We tag all these objects with an extra flag, and toBill simply tests whether this flag is set or not. If it is,
we are in the distributed control flow, if not, we are not.
aspect Billing {

[... code detailed above ...]

private static boolean toBill(TravelInfo inf) {
return inf.toBill;

}

private boolean TravelInfo.toBill = false;

Booking around(Reservation res) :
execution(Booking TravelService.confirm(Reservation)) && args(res) {
[... for all TravelInfo objects in res toBill = true ...]
Booking b = proceed(res);
[... for all TravelInfo objects in res toBill = false ...]
return b;

}
}

This yields the second major assumption for this implementation:
A2: For all method executions in the distributed control flow that we wish to capture, there is at least one parameter
obj that exists at the beginning of the control flow and is reachable at that point.

This assumption implicitly relies on the following:
A3: (A copy of) the above parameter obj is not storedwithin this control flow and later retrieved, nor is it concurrently
accessed.

Both assumptions hold in this application, however it is clear that we cannot expect this to be so in the general case.

Restricting the distributed control flow. To conclude the implementation of this case, we need to simulate stopping
propagation when leaving the travel group or when crossing the database facade. Our distributed control flow pointcut
however does neither. To be inactive outside the travel groupwemodify the inScope pointcut.We include a test for whether
the current host is part of the travel group, assuming the aspect implements an inTravelGroup() method for this:
private pointcut inScope(): inScope2(TravelInfo) && if(inTravelGroup());

Deactivation beyond the database facade is obtained by toggling the toBill flag at the DBAccess facade, as follows:
aspect Billing {

[... code detailed above ...]

void around(TravelInfo inf) :
call(* DBAccess.*(..)) && args(inf) && if(inf.toBill) {
boolean wasSet = inf.toBill;
if (wasSet) inf.toBill = false;
proceed(inf);
if (wasSet) inf.toBill = true;

}

[... inTravelGroup implementation ...]
}

3.1.2. Case 2: Controlling activation
Intuitively, it seems that we can easily restrict profiling to the client by only weaving the classes that are present on the

client. This is indeed possible, but relies on a subtlety of how Java RMI works in combination with AspectJ. The origin of
this complication is that we pass objects between the client and the server, e.g. in the bookPackage call. In this call, the first
three arguments (a FlightSpec, a RoomSpec and a Traveler) are passed by copy. A Java RMI call with pass-by-copy arguments
or return value requires that the classes of these values are identical on both hosts. This is determined by the contents of
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a classVersionUID field [23]. If we do not declare this field, it is automatically generated at compile time, and thus will be
different on the client and the server, due to the AspectJ weaving process. As a result, the RMI call will throw a class version
exception. If we do declare and initialize this field, it will be the same on both client and server, and RMI will consider both
the woven class (on the client) and unwoven class (on the server) as being the same.

While this solution works, it is low-level and brittle, because it relies on unspecified guarantees of the current
implementation of AspectJ with respect to weaving and serialization. Therefore, we prefer a different solution to restricting
profiling to the client that is more robust. Similar to the solution in the first case, we obtain activation of the profiling aspect
to the travel client by adding an inScope() condition to its pointcut:

aspect Profiling {
pointcut Profile(): execution(* *.*(..));

private pointcut inScope() :
if(inTravelClient())
&& !cflow(execution(* Profiling+.inTravelClient()));

boolean inTravelClient(){ [...] }

before(): profile() && inScope(){ [...] }

after(): profile() && inScope() { [...] }
}

The inTravelClient() method of the aspect determines if the current host is the travel client. Due to the fact that the
Profiling aspect uses a generic execution(* *.*(..)) pointcut, we need to ensure that the inTravelClient() method itself
is not profiled, otherwise an infinite loop occurs. Hence the last condition of the pointcut.

3.1.3. Case 3: Controlling per-object activation
Similar to the lack of distributed control flow, AspectJ does not provide support for deploying an aspect on specific objects

in a distributed setting. An aspect deployed on an object (using perthis or pertarget) on one host does not migrate with
the object when the latter moves from one host to another host. Any state that is held in the aspect is lost when an object
migrates. As a result, outside of the travel service clientwe cannot distinguish between an object that had the Privacy aspect
deployed at instantiation time and one that did not.

Such an object-specific deployment could be simulated as follows: in the Privacy aspectwe use an inter-type declaration
to add two extra flags to the objects, similar to what we did for the Billing aspect. One flag specifies whether the object
should have the Privacy aspect embedded, and the second whether the aspect should be active or not. We then have the
Privacy aspect activate whenever both flags are set. We can use advice to set and clear flags when required, again as in the
Billing aspect. The problem with this is however that the pointcut for this flag manipulation advice can arguably become
non-trivial.

To avoid an overly complex pointcut for flag manipulation we do not implement the general case. Instead we restrict
ourselves to an implementation specific to this example: all Traveler objects created on the client are protected if they
are out of the travel group. We add the current host name to Traveler objects at creation time. The inScope pointcut then
verifies if this is the client host name andwhether it is running outside the travel group, using an outOfTravelGroup method.

public aspect Privacy {
private String Traveler.creationHost = getHostName();

private pointcut clientCreated(Traveler t):
this(t) && if(t.creationHost.equals("TravelClient"));

private pointcut inScope():
clientCreated(Traveler) && if(outOfTravelGroup());

private pointcut protectMe() : [...]

String around() : protectMe() && inScope() {
return "N/A";

}

[... implementation of getHostName and outOfTravelGroup ...]
}
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3.1.4. Summary of limitations
Using AspectJ we are able to obtain a correct implementation of all three cases, but there are however significant

downsides. Not only do we need to modify the pointcuts of all aspects, but we also need to take into account the three
far-reaching assumptions we highlighted above: allow for static deployment (A1), have specific objects follow the entire
distributed control flow (A2), and only this control flow (A3). It is clear that in the general case we cannot make such
assumptions. Therefore AspectJ fails to provide adequate support for these scenarios.

3.2. CaesarJ implementation

We now consider the CaesarJ language [1]. Unlike AspectJ, CaesarJ provides support for both dynamic and remote
deployment.

Dynamic deployment (recall Section 2.2) refers to the possibility of dynamically deploying and undeploying aspects
either locally inside the current JVM or within a thread. In CaesarJ, aspects are explicitly instantiated from classes.4 An
aspect instance asp can be deployed locally using the construct deploy asp. It can then be undeployed using the dual
construct undeploy asp. The scope of the aspect instance can also be further restricted either by deploying the aspect on
specific objects with the API calls deployOnObject(asp, obj ) and undeployOnObject(asp, obj ), or by using the construct
deploy(asp )block , which deploys the aspect asp along the control flow delimited by the block block.

Remote deployment enables interception of remote join points. Remote deployment does not occur by default but requires
that, first, remote deployment is activated on each remote host and, second, each aspect instance asp is deployed on the
appropriate remote host host through the construct host.deployAspect(asp ).

In the case of thread-based deployment, when the control flow jumps to a remote host, the aspect is automatically
deployed on the remote host without the need for explicit remote activation. This deployment along a distributed control
flow combines dynamic and remote deployment.5

As a result, CaesarJ may look like an ideal target for implementing the scenarios associated to our running example. As
we shall see, the facilities provided by CaesarJ are an interesting first step but are far from providing solutions to all the
issues raised by these scenarios.

3.2.1. Case 1: Controlling propagation

Basic scenario. As long as we do not restrict propagation of the billing aspect along the control flow of the call to the confirm
method, the deployment of the Billing aspect can be straightforwardly implemented using distributed control flow:

Booking booking = null;
deploy (new Billing()){ booking = confirm(res); }

The Billing aspect has just to be adapted to cater for the syntax of CaesarJ. Concretely, the keyword aspect has simply
to be replaced by the keyword cclass to tell the compiler that it is not a plain Java class.

Refined scenario. Refining the scenario in order to avoid aspect propagation within the weather server and behind the
database facade is however an issue. There is no way to explicitly refine deployment by excluding part of the control
flow, based either on host information (to restrict propagation to the travel group) or on a receiver’s type (to deactivate
propagation beyond the database facade). Again, like with AspectJ (Section 3.1), the aspect itself, pointcut or advice, has to
be modified.

Avoiding the selection of join points within the database can be obtained by defining an inScope pointcut, as we have
done before. This pointcut excludes the control flow beyond the database facade:

private pointcut DBBarrier(): call(* DBAccess.*(..));
private pointcut inScope() : !cflow(DBBarrier());

Propagationwithin theweather server could be excluded in the sameway, but this does not take into account the general
intention of the scenario, which is to exclude propagation within members of the travel group. Unfortunately, it is not
possible to use conditional pointcuts, as CaesarJ does not provide support for them, or even test host information as part of
the advice code. The latter is because the piece of advice part of the billing aspect is always executed on the travel server.
When the aspect propagates outside of the travel server, the host information required to know whether the execution
is outside of the travel group is where the join points take place. This is how a remote aspect works: the piece of advice
is executed locally (here, on the travel server) and the join points remotely (along the control flow of package booking,
see Fig. 2) . Whereas distinguishing the locus of execution of a join point and a piece of advice does not make sense in a
non-distributed context, it is typical of distributed applications. The problem is that (i) host information cannot be tested

4 This classes are distinguished from plain Java classes through the keyword cclass and contain at least a pointcut and its associated piece of advice.
5 This corresponds to the way this is implemented in the current version of CaesarJ (version 0.9.0), using the same syntax as thread-based deployment.

Previously, a specific API call had to be used [1].
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at the pointcut level as there is no specific pointcut to do so and conditional pointcuts are not available in CaesarJ (ii) host
information is not part of the reflective information about the current join point made available to advice code.6

As a result, the general scenario excluding propagation outside the travel group cannot be implementedwithout changing
the base program (by, for instance, enforcing the addition of a parameter carrying host information to remote methods). A
fallback consists of making the following assumption:

B1: The weather server is the only server outside of the travel group.

This makes it possible to handle the weather server like the database, with a specific inScope condition:

private pointcut WeatherBarrier(): execution(* IWeatherService.*(..));
private pointcut inScope() : !cflow(WeatherBarrier);

3.2.2. Case 2: Controlling activation
As discussed above, there is noway to deactivate aspects along a distributed control flowwithout significantlymodifying

the base program. This calls for a new assumption:

B2: The travel agent client is not multi-threaded and does not perform other computations than the ones we are
interested in.

Then, it suffices to deploy the Profiling aspect on the local JVM. If this was not the case, the pointcut would have to be
extended with a new inScope condition restricting profiling to the local control flows of interest:

pointcut cflowRoots():
execution(static void Main.main(..)) // client entry point
|| execution(Reservation Selector.pick(..)); // callback entry point

pointcut inScope(): cflow(cflowRoots());

3.2.3. Case 3: Controlling per-object activation
It may look like CaesarJ offers all the building blocks to implement this scenario in a general way: per-object deployment

and remote deployment. Unfortunately, CaesarJ is limited in that these two features cannot be composed: per-object
deployment does not apply remotely. It is not possible either to use the fact that the Traveler objects of interest are only
used along a specific distributed control flow aswe cannot distinguish, along this control flow, the trusted and the untrusted
servers. Finally, in the absence of inter-type declarations and conditional pointcuts, it is not possible to implement the
specific AspectJ solution that was described previously.

3.2.4. Summary of limitations
CaesarJ offers a number of interesting features: per-object deployment, deployment on a JVMor on a (distributed) control

flow, and remote deployment. Unfortunately, these features cannot be composed. Per-object deployment does not apply
remotely and, although an aspect can be deployed remotely on a host by host basis, the activation of an aspect along a
distributed control flow is independent from the host. The lack of conditional pointcuts and inter-type declarations further
complicates the implementation ofworkarounds. As awhole, there is noway to directly capture the intentions of our various
scenarios. Implementing case 1 requires hardwiring the definition of the travel group (B1) and using scoping pointcuts.
Implementing case 2 requires either making assumptions on the implementation of the travel agent client (B2) or using
scoping pointcuts based on a precise knowledge of the application control flow. Even worse, the impossibility of combining
per-object and remote deployment linked to other incidental shortcomings prevents a reasonably simple implementation
of case 3.

3.3. AWED implementation

AWED does not include means for the dynamic deployment of aspects: aspects are deployed statically on sets of hosts.
In contrast to AspectJ and CaesarJ, AWED provides three features that allow pointcuts and advice to be defined declaratively
and concisely over sets of hosts: remote cflow and sequence pointcuts, relative host selectors and host groups. Remote cflow
and sequence pointcuts enable thematching of control-flow and sequence relationships between execution events occurring
on different hosts. Relative host specifications allow hosts (on which execution events are to be matched or advice to be
executed) to be defined relative to where an aspect is deployed. This mechanism makes it possible, e.g. to differentiate
between local and remote hosts. Host groups, finally, provide a simple mechanism to quantify over many hosts in pointcut
and advice definitions.

Overall, these means for expressive pointcut and advice declarations complement AWED’s static strategy for the
deployment of aspects on sets of hosts such that distributed aspects directly express relationships and modifications

6 It is actually worse than that as, currently, this reflective information is not serializable, which means that the information exposed by the remote join
points (for instance their signature) is not available. This is quite illustrative of the kind of ‘‘details’’ that have to be taken care of when switching from a
sequential to a distributed setting.
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involving all relevant machines. Nonetheless we still need to make the same assumption (A1) as in AspectJ, which is that
we allow for static deployment.

3.3.1. Case 1: Controlling propagation
Applying the billing aspect as described in the first scenario can be expressed concisely using the remote control-flow

and host pointcuts of AWED. Compared to the AspectJ implementation, AWED cflow pointcuts are not subject to limitations
A2 and A3 from Section 3.1. As a consequence, this scenario can be straightforwardly implemented as shown below:

aspect Billing {
pointcut billMe(TravelInfo inf):

execution(* *.resConfirmed(TravelInfo)) & args(inf);
pointcut inScope():

cflow(TravelService.confirm(Reservation))
&& !cflow(DBAccess.current())
&& host(TravelServer, HotelServer);

after(TravelInfo inf): billMe(inf) && inScope() {
bill.addItem(inf);

}
}

Here, the calls beyond the database facade are excluded by the second term within the inScope() conjunction. The calls
on the weather server are not taken into account because the weather server’s host is not included in the host list given on
the third line. Note that here a negated cflow condition on the call to the weather server could have been used as well. This
is because the scope of calls originating in the weather server do not extend to other hosts.

3.3.2. Case 2: Controlling activation
Activation of aspects, e.g., in order to restrict the application of a profiling aspect to client computations only can be

straightforwardly expressed in AWED by combinations of cflow pointcuts and host-selecting pointcuts. The robust variant
for the profiling activation presented in Section 3.1 is applicable directly to the distributed setting in AWED using the
following scope definition:

pointcut inScope():
cflow(execution(static void Main.main())) // client entry point

&& host(TravelClient)

This pointcut definition can be used in aspects deployed on any host and ensures that only calls on the client host clientH
are profiled. Note that this formulation is more concise than the AspectJ and CaesarJ solutions discussed above.

3.3.3. Case 3: Controlling per-object activation
Hiding personal data from computations on certain hosts can also be expressed in a direct manner using AWED through

the use of a sequence pointcut as below:

pointcut protectMe(Traveler trv): seq(
call(Traveler.Traveler(..)) && this(TravelerFactory)

&& target(trv) && host(TravelClient),
(execution(String Traveler.getAdress())

|| execution(String Traveler.getPhone()))
&& target(trv) && !host(TravelGroup));

This definition replaces the protectMe pointcut of the original aspect. It specifies a sequence of operations that matches
calls to the methods getAddress and getPhone that occur after a traveler object has been created by the factory on the client
and the same object is used outside of (i.e., not on a host in) the group TravelGroup. This definition closely matches the
AspectJ solution described in Section 3.1 in that it makes explicit the creation of the factory on the client host and only
restricts accesses outside the travel group. However, the AWED solution does not need helper methods encoding conditions
on the distributed state of the overall system.

While this sequence pointcut concisely expresses the activation condition for implementing the privacy aspect in our
running example, it does notmatch the underlying objectives in twoways. First, since aspects cannot be bound to individual
objects (and not be deployed on a per instance manner), the AWED aspect implements external control exerted by the
execution infrastructure instead of a control mechanism implemented as part of the object itself. Second, the above aspect
can be used as an additional scoping condition for the previously considered control-flow pointcuts, but provides a complete
definition of the necessary relationships between execution events.
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Table 1
Non-distributed base language and aspects.
Base program syntax
Definition ::= (define Variable Expression)
Expression ::=

Constant
| Variable
| (lambda (Variable*) Expression)
| (Expression Expression*)
| (set! Variable Expression)

Aspect program syntax
Aspect ::= (Pointcut . Advice)
Pointcut ::= Expression
Advice ::= Expression

Join point structure
(define-struct jp (fun args parent))

Pointcut domain
PC = JoinPoint → Bool
Before advice domain
ADV = JoinPoint → Unit
Aspect domain
ASP = PC ×ADV
Scoping strategy syntax
Strategy ::= <Expression,Expression,Expression>

Scoping strategy domain
S = PC × PC × PC
Aspect deployment primitives
Expression ::= ... | Deploy
Deploy ::=

(deploy Strategy Aspect Expression)
| (deploy-on Strategy Aspect Expression)

Aspect Environment domain
A = {⟨a, σ ⟩ | a ∈ ASP , σ ∈ S}

3.3.4. Summary of limitations
AWED performs significantly better than AspectJ and CaesarJ, only requiring the assumption (A1), which is that we

allow for static deployment. This is thanks to support for distributed control flow, host matching and sequence pointcuts.
Nonetheless, we are still confronted with reuse issues: the lack of dynamic deployment requires rewriting the pointcuts of
the respective aspects, and the use of sequence pointcuts hardcodes sequences of events in the pointcuts themselves. The
use of scoping strategies overcomes these limitations, as we detail in the remainder of this paper.

4. Scoping of non-distributed aspects

In this section, we introduce scoping of non-distributed aspects. First, we present our base language that is based on
Scheme. Then, we define aspects in terms of Scheme expressions and aspect weaving using a corresponding interpreter.
Finally, we introduce scoping strategies as a means to restrict the scope of aspects.

4.1. Base language

Our base language, shown in Table 1, is a subset of Scheme. Expressions are constants (e.g., numbers, strings, booleans),
variables and function definitions, and applications that use call-by-value argument passing. Variables are mutable. The
only data structure supported are cons cells, and by extension, n-ary tuples and lists. In addition, we assume the language
supports a set of standard primitives inherited from Scheme itself.

The operational semantics of our base language is defined by the interpreter7 in Fig. 3. This interpreter is written in
environment-passing style [11]: the main function, eval, has two arguments: an expression (i.e., an abstract syntax tree)
and an environment E that binds variables to values. The interpreter evaluates an expression following a simple case-based
test. When the expression to be evaluated is a constant (tested by the predicate const?), then its value is returned by the
accessor const-value. Accessing and setting a variable is done by respectively looking up in andmutating the current lexical
environment. Defining a function creates a closure that captures its lexical environment. Finally, applying a function evalu-
ates the body of the closure in its definition-time environment that is extendedwith newbindings for the formal parameters.

4.2. Aspects

We now extend our higher-order base language with aspects. We start with amodel of join points, pointcuts and advices
which is similar to that of AspectScheme (a formal semantics of which can be found in [9]). The focus of our work is on

7 Our executable Scheme interpreters, along with examples, are available online: http://pleiad.dcc.uchile.cl/research/scope.

http://pleiad.dcc.uchile.cl/research/scope
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;; evaluate expression exp in lexical environment E
(define (eval exp E)

(cond ((const? exp) (const-value exp))
((var? exp) (lookup (var-name exp) E))
((fun? exp) (make-closure (fun-params exp) (fun-body exp) E))
((app? exp) (let* ((cl (eval (app-fun exp) E))

(args (eval-args (app-args exp) E))
(env (extend-env (closure-params cl) args

(closure-env cl))))
(eval (closure-body cl) env)))

...))

Fig. 3. Interpretation of a higher-order procedural language.

(define call (lambda (f) (lambda (jp) (eq? (jp-fun jp) f)))))

(define || (lambda (pc1 pc2) (lambda (jp) (or (pc1 jp) (pc2 jp)))))

(define within (lambda (f) (lambda (jp)
(and (has-parent? jp) ((call f) (jp-parent jp))))))

(define cflow (lambda (pc) (lambda (jp)
(or (pc jp) ((cflowbelow pc) jp)))))

(define cflowbelow (lambda (pc) (lambda (jp)
(and (has-parent? jp) ((cflow pc) (jp-parent jp))))))

Fig. 4. Some typical pointcut designators.

scoping, that is, how to delimit the set of join points that an aspect can potentially match; the kinds of join points and effects
at these join points is an orthogonal concern. So, similar to our previous work [25], for the sake of simplicity and without
loss of generality, we restrict ourselves to function call join points, functional pointcuts and before advices in the following.

Join points correspond to function applications in the base program. A function call is either top-level or nested within
pending function calls. So, a join point in context is an abstraction of the call stack: it is represented by a recursive structure,
whose head is the current join point (the function to apply), and whose tail is the context (the pending active function
applications). In our interpreter a join point is a structure that aggregates the applied function, the arguments, and its parent
join point (#f at the root):

(define-struct jp (fun args parent))

A pointcut is a predicate over join points in context, i.e., it is a function of type8:

PC = JoinPoint → Bool.

We can then define combinators that compose pointcuts. A pointcut designator, such as call, is a function that returns
a pointcut. Fig. 4 shows definitions of typical pointcut designators. The function call takes a function identifier f as a
parameter and returns as pointcut a function that takes a join point jp and tests if the join point corresponds to f. For
instance, if reserve is a function in scope, then (call reserve) returns a pointcut thatmatches applications of that function.
The function || returns a pointcut that checks if a join point satisfies a disjunction of pointcuts. Pointcut designators can also
inspect the call stack of join points. The function within checks the last pending function call. It takes a function identifier f
as a parameter and returns a function that takes a join point jp and tests if the join point nesting jp is a call to f. The function
cflow tests all pending function calls. It takes a pointcut pc as a parameter and returns a new pointcut that tests if the given
join point satisfies the pointcut pc, or if one of the nesting join points satisfies that pointcut (by calling cflowbelow). Finally,
the function cflowbelow is similar to cflow but is restricted to the parents of the join point.

We simply model advice as functions of type9:

ADV = JoinPoint → Unit

an advice performs its effect before the standard interpretation proceeds, and its return value is ignored. We do not account
for context exposure beyond the fact that an advice receives the matched join point in context as parameter.

8 This formalization is simplified, because we do not account for context exposure of pointcuts. Context exposure can, however, be integrated using
well-known means, in particular by changing the signature of a pointcut to return either false (no match), or an environment containing bindings to be
provided to the advice [17,9].
9 This definition reflects the simplifications we have mentioned previously: pointcuts do not expose context information, and we only support before

advice. Accounting for both context information and around advice with proceed would have to follow the formalization of [9].
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;; the global aspect environment
(define *aspects* ’()) ;; populated upon program elaboration

;; evaluate expression exp in lexical environment E
;; with current join point jp
(define (eval exp E jp)

(cond ((const? exp) (const-value exp))
((var? exp) (lookup (var-name exp) E))
((fun? exp) (make-closure (fun-params exp) (fun-body exp) E))
((app? exp) (let* ((cl (eval (app-fun exp) E jp))

(args (eval-args (app-args exp) E jp))
(njp (make-jp cl args jp))
(env (extend-env (closure-params cl) args

(closure-env cl))))
(weave-all njp)
(eval (closure-body cl) env njp)))

...))

;; weaves all aspects
(define (weave-all jp)

(map (lambda (asp) (weave asp jp)) *aspects*))

;; weaves aspect on jp (if pc match, apply advice)
(define (weave asp jp)

(if (app/prim (asp-pc asp) jp)
(app/prim (asp-adv asp) jp)))

;; app/prim: primitive application, does not generate join points

Fig. 5. Simplified pointcut-advice interpreter.

Finally, an aspect a ∈ ASP is simply represented as a pair of a pointcut and an advice. To construct an aspect, a dotted
pair notation is supported in the language (see Table 1, aspect program syntax).

Aspect weaving is defined by the interpreter outlined in Fig. 5. It extends the interpreter of the base languagewith a third
argument jp: the join point at the enclosing function application. This argument enables the representation of join points in
context. When a function is to be applied, the interpreter evaluates the function and its arguments (as the base interpreter)
but also creates a new join point njp representing that application. Then it triggers weaving, and it proceeds with executing
the function application, with the new join point. In our model both pointcuts and advices are first-class values. However,
we consider that pointcuts and advices are executed by app/prim in ‘‘sandboxes’’ (e.g., by the base language interpreter)
where no aspect can match, thereby avoiding aspect reentrancy issues. For a general discussion about reentrancy issues
with aspects, in particular with first-class pointcuts and advices, we refer the reader to the work of Tanter [24,27].

At this stage, we simply consider a global aspect environment, i.e., a global variable in the interpreter. Weaving iterates
over all the aspects in this global environment, applying their pointcuts to the new join point, and applying the associated
advice whenever a pointcut matches.

4.3. Non-distributed scoping strategies

Aspect scoping strategies have initially been proposed in a non-distributed context [25] under the name of deployment
strategies. Compared to the environment-passing style interpreters we have presented until now (Fig. 5), an interpreter
of aspects with dynamic deployment and scoping strategies evaluates an expression within an aspect environment that is
passed around between evaluation steps.

An interpreter for non-distributed scoping strategies is shown in Fig. 6. It takes an extra parameter, the aspect
environment A that contains the currently-deployed aspects whose pointcuts must be evaluated. It is a set of pairs ⟨a, σ ⟩,
where a is an aspect and σ is a scoping strategy. In brief, a scoping strategy σ ∈ S is a triple of pointcuts ⟨c, d, f ⟩, where
c and d are propagation functions used to specify, respectively, call stack propagation and propagation within entities that
are subject to delayed evaluation (e.g., created functions or objects), and f is a join point filter used to express deployment-
specific filtering of the join points that are visible to the deployed aspect. All three components are pointcuts, i.e., they take
a join point as parameter and return a boolean (see Table 1).

An aspect is initially inserted into the environment when it is deployed, along with its strategy defined as a 3-tuple of
pointcuts <Call,Delay,Filter>. An expression (deploy ⟨c, d, f ⟩ a e) is evaluated by the third case in the interpreter, (depl?
exp). It inserts ⟨a, σ ⟩ in the current aspect environment before proceedingwith the evaluation of the reducible expression e.
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(define (eval exp E jp A)
(cond ((const? exp) (const-value exp))

((var? exp) (lookup (var-name exp) E))
((depl? exp) (let ((dasp (make-dasp exp E A jp)))

(eval (depl-body exp) E jp (cons dasp A))))
((fun? exp) (make-closure (fun-params exp) (fun-body exp) E

(collect-match-d jp A)))
((app? exp) (let* ((cl (eval (app-fun exp) E jp A))

(args (eval-args (app-args exp) E jp A))
(njp (make-jp cl args jp))
(env (extend-env (closure-params cl) args

(closure-env cl)))
(asps (union (collect-match-c njp A)

(closure-aspects cl))))
(weave-some A njp)
(eval (closure-body cl) env njp asps)))

...))

(define (weave-some A jp) (weave-all (collect-match-f A jp) jp))
(define (collect-match-c jp asps)

(collect-if (lambda (a) ((dasp-c a) jp)) asps))
(define (collect-match-d jp asps)

(collect-if (lambda (a) ((dasp-d a) jp)) asps))
(define (collect-match-f jp asps)

(collect-if (lambda (a) ((dasp-f a) jp)) asps))

Fig. 6. Interpretation of scoping strategies for a higher-order functional language.

Adef = {⟨a, σ ⟩ ∈ A | σ = ⟨c, d, f ⟩ ∧ d(njp)}
Aapp = {⟨a, σ ⟩ ∈ A | σ = ⟨c, d, f ⟩ ∧ c(njp)} ∪ closure.A

Aweave = {⟨a, σ ⟩ ∈ A | σ = ⟨c, d, f ⟩ ∧ f (njp)}

Fig. 7. Semantics of non-distributed scoping strategies in a nutshell.

When a function is evaluated by the fourth case of the interpreter, (fun? exp), a closure is built by make-closure. This
closure stores aspects that are selected from the aspect environment by the function collect-match-d, which uses the delay
component d of the scoping strategy. When a function application is evaluated by the fifth case of the interpreter, (app?
exp), a new aspect environment asps is computed first. It contains the aspects selected from the aspect environment by the
function collect-match-c, which uses the call stack component c of the scoping strategy. It also contains the aspects stored
in the closure cl of the function to be applied. Next, the function weave-some first selects the aspects that should potentially
be woven by using the filter f of their scoping strategy (collect-match-f). The interpreter weaves the resulting aspects that
match the current join point. Finally, the body of the applied function is evaluated in the context of asps.

Fig. 7 summarizes the semantics of scoping strategies in a non-distributed context:

• When a function is defined, the corresponding closure captures only those aspects whose propagation function for
delayed evaluation d returns true. This forms the set Adef .
• When a function is applied, its body is evaluated in an aspect environment comprised of the aspects in the current aspect

environmentwhose propagation function for call stack c returns true, in addition to the aspects in the aspect environment
of the closure. This forms the set Aapp.
• The set of aspects Aweave that should be woven at a given join point is obtained by selecting the aspects of the current

aspect environment whose join point filter f accepts the current join point.

The above description of scoping strategies is directly based on Tanter’s original formulation [25]. For this work on
distributed aspects, we have found practical and necessary to extend the set of deployment expressions to include the ability
to deploy an aspect on an existing procedural value using (deploy-on a σ e). Intuitively, e is first reduced to a procedural
value, and aspect a is deployedwithin that value, with scoping strategy σ . This means that a is deployed over the evaluation
of the function body each time the function is applied, with scoping strategy σ .

Supporting explicit per-object deployment in the language is direct. It is sufficient to add the following case in the
interpreter of Fig. 6:

((depl-on? exp)
(let* ((cl (eval (depl-on-fun exp) E jp A))
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Table 2
Distributed base language and aspects.
Distributed base program syntax
Expression ::=

...
| (export Expression)
| (export-as Literal Expression)
| (lookup Host Literal)

Distributed join point structure
(define-struct jp (kind fun args parent host target-host))

Aspect deployment primitives
Deploy ::=

...
| deploy-global-on-host Host Aspect

(dasp (make-dasp exp E A jp)))
(set-closure-aspects! cl (union (list dasp)

(closure-aspects cl)))))

To interpret the deploy-on expression, the interpreter first obtains both the closure and the aspect (with its associated
scoping strategy), and then adds the aspect in the aspect environment of the closure (using union to avoid duplicates).
Although not included in the core of the article, deploy-on was discussed in [25] (in an object-oriented setting); in particular,
it is argued that deploy-on is more powerful than per-instance aspect deployment of CaesarJ, composition filters [4], and
AspectJ’s per-this aspects, because in these proposals, aspects do not propagate (i.e., they are deployed on an object with a
fixed scoping strategy σ = ⟨λjp.false, λjp.false, λjp.true⟩).

5. A model of distributed aspects

This section gradually introduces a model of distributed AOP that covers the relevant parts of the current state of the art
in distributed aspect languages. We start by adding distribution to the small Scheme-like higher-order procedural language
introduced in Section 4, then aspects, and finally add some typical distributed aspect support. Thismodel is further extended
in Section 6 to fully support distributed scoping strategies.

5.1. Adding distribution

Wenowextend the languagewith support for distribution as shown in Table 2.We introduce ameans to export functions
so that they can be referenced and applied from a remote host, via a function stub. Like in standard remote procedure call
and remote method invocation, remote function application is synchronous.

A host runs a local registry of the functions it exports. The programmer can export a function on the current host using
the export primitive, which returns a stub to that function. Passing this stub as a parameter of remote calls permits other
hosts to apply the function remotely. Additionally, one can export a function giving it a name using export-as. A remote
host can then do a lookup of that name on that host in order to obtain a stub to that function.

A stub is a structure that contains the name of the function, the identifier of the host that provides the function, as
well as any interesting metadata on the function (such as expected number of arguments or any other type information).
Parameter passing is done by copy, but of course, passing a stub by copy is equivalent to passing an exported function by
(remote) reference.

Passing a closure (not a stub) by copy implies also copying the transitive closure of its captured environment. In order to
avoid copying the full local environment of each host, each host has a global root environment that is not captured by copy
and hence never passed over the network. Examples of values that reside in the root environment are typical library and
utility functions.

To illustrate, consider the code below run on the booking server, which exports a reservation service under the name
‘‘reserve’’:
(export-as "reserve" (lambda (tinfo specs) ...))

On a client, the service can then be looked up and applied:
(let ((res (lookup "booking server" "reserve")))

(res ... ...))

Fig. 8 sketches the evolution of the interpreter to support distribution. The interpretation of a function application by
eval-app now needs to discriminate between local and remote calls. Local calls are interpreted by eval-exec as before.
Remote calls interpreted by remote-exec imply extracting information from the stub, serializing it and sending it to the target
host. Since remote invocation is synchronous, the interpreter then waits for the result, and deserializes it when available.
On the server side, when a call to an exported function is received, the function receive-call looks up the actual closure,
and evaluates it locally. The result is then serialized and sent back to the caller.
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(define (eval exp E)
(cond ...

((app? exp)
(let ((cl (eval (app-fun exp) E))

(args (eval-args (app-args exp) E)))
(eval-app cl args))))

...)))

(define (eval-app cl args)
(if (fun-stub? cl)

(remote-exec cl args)
(eval-exec cl args))))

(define (eval-exec cl args)
(eval (closure-body cl)

(extend-env (closure-params cl)
args
(closure-env cl)))))

(define (remote-exec f args)
...serialize host, function id & arguments...

...send to target host, triggers receive-call

...wait for result...

...deserialize result...))

(define (receive-call x)
...deserialize client host, function id & arguments...

(let ((f (lookup-exported id)))
(eval-exec f args)
...serialize result...

...send back to caller...)))

Fig. 8. Interpretation of a higher-order procedural language with distribution.

5.2. Distributed aspects

Current distributed aspect languages and frameworks provide different mechanisms to deploy aspects on hosts in a
network. Except for CaesarJ’s distributed control flowdeployment andAWED’s remote advice execution, these specifications
are all static, and imply that aspects have global scope on each host.

As a first step, we introduce a mechanism to deploy an aspect on a given (set of) host(s). Like existing proposals, this
mechanism gives aspects a global scope on each host; however, in our model aspects are not statically-specified entities.
Therefore, our per-host deployment mechanism is dynamic. Executing:

(let ((pc (call reserve))
(adv (lambda (jp) ...)))

(deploy-global-on-host "host1" (pc . adv)))

deploys an aspect that operates on calls to reserve on host host1. The implementation adds the aspect to the global aspect
environment of that host. This global deployment scheme is refined in the next sectionwhen introducing distributed scoping
strategies.

When aspects are passed over the network, for instance when they are deployed on a remote host, like above, they are
treated as plain values, passed by copy. But since pointcuts and advice are first-class functions, they can also be remote
functions: in that case, they are passed by reference over the network and are always executed on their exporting host.

This difference matters when one considers that these functions can be stateful: they encapsulate their lexical
environment, which can bemutated. For instance, in the deployment example above, suppose that adv is a stateful function,
like a counter. adv is being passed by copy, so on host1, adv will have its own local state. On the contrary, if onewould deploy
it as:

(deploy-global-on-host "host1" (pc . (export adv)))

the advice function is passed by remote reference, since it is first exported using export. Therefore its state does not reside
on host1 but on the host on which the deployment is performed.
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(define host
(lambda (props)

(lambda (jp) (host-match? props (jp-host jp)))))

(define local-cflow
(lambda (pc)

(lambda (jp) (or (pc jp)
((local-cflowbelow pc) jp)))))

(define local-cflowbelow
(lambda (pc)

(lambda (jp)
(and (has-parent? jp)

(same-host? jp (jp-parent jp))
((local-cflow pc) (jp-parent jp))))))

Fig. 9. Distribution-related pointcut designators.

Because a join point in context keeps a parent link to its predecessor join point, it is an abstraction of the call stack
(Section 4.2). The interpreter always passes the current join point around, including upon remote calls. Therefore, the stack
abstraction is maintained upon distribution, resulting in a representation of a distributed call stack.

Performance-wise, passing this stack abstraction by copy upon each remote call is not appropriate. Better solutions can
be devised. For instance, the join points can be stored locally by default and lazily copied. However, as this has no influence
on the semantics of aspect deployment and execution, we will stick here to the simple model presented in the previous
paragraph.

With respect to expressiveness of the aspect language, it has been repeatedly shown that being able to discriminate join
points based on their host of occurrence is valuable [3,19,29], e.g. to express pointcuts that match only on certain hosts. To
this end, we extend the representation of a join point to embed its host of occurrence. We also go a step further by including
the target host of a call. This provides the ability to discriminate join points not only based on where they occur, but also
if they are remote calls or not, and to which host they are directed. In order to be able to reason about hosts, we represent
hosts by a set of key-value properties, as in ReflexD [29]. This allows the possibility to define host groups like in AWED [3].

Fig. 9 presents a number of pointcuts and pointcut designators that take advantage of these extensions. The pointcut
designator host matches a join point only if its host matches the given set of properties props. We can also define local-only
versions of the control flow pointcut designators, so as to ensure that pointcut matching does not involve inspecting the
remote stack. In particular, local-cflow and local-cflowbelow inspect the call stack of join points as long as they are on
the same host.

5.3. Extending the execution model

While themodel of distributed aspects presented up to here is fairly complete, we extend it furtherwith two refinements.
These refinements—namely, the separation of call and execution, and of definition and copy of functions—are not specific to
distribution. However, they are natural in a distributed setting. In addition, when combined with the basic distributed AOP
features we have already presented, they make it possible to define distributed scoping strategies as simple transformers of
non-distributed strategies, as will be shown in Section 6.

The first refinement is to split ‘‘function application’’ into function call and execution. Most non-distributed aspect
languages actually make this distinction. In a distributed setting, it makes even more sense because both join points
potentially happen on different hosts: e.g. the call on the client host, and the execution on the server. So, we introduce a
new kind of join point to denote function execution. Such a join point is created on the host that evaluates the actual body
of a function.

Since up to now we had only one kind of join point, we need to refine the definition of join points with an extra kind
attribute. To sum up, a join point is now defined as:

(define-struct jp (kind fun args parent host target-host))

where (up to now) kind can be either call or exec.
The second refinement is to consider that a function can not only be created when defined in program text, but also

whenever a function is copied. In a distributed setting, this is important because arguments to remote functions are passed
by copy. We introduce two new kinds of join points, new and copy, to denote ‘‘fresh’’ function creation and function copy,
respectively. A copy join point holds the original function in its fun attribute.

Just introducing a copy operation in the execution model enables us to talk about remote parameter passing uniformly.
These extensions enable us to define distribution related pointcut designators. For instance, in Fig. 10, the function remote?
discriminates remote join points from local ones. Similarly, remote-call and remote-copy discriminate the different types
of join points.
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(define remote?
(lambda (jp) (not (eq? (jp-target-host jp) (jp-host jp)))))

(define remote-call?
(lambda (jp) (and (call? jp) (remote? jp))))

(define remote-copy?
(lambda (jp) (and (copy? jp) (remote? jp))))

Fig. 10. More distribution-related pointcut designators.

6. Scoping of distributed aspects

Section 5 has introduced a simple model of distributed aspects, which covers a good part of the features of current
distributed aspect languages/frameworks like remote pointcuts [19], AWED [3] and ReflexD [29]. The model includes four
kinds of join points (call, execution, new, copy), potential remote evaluation of both pointcuts and advices, property-based
representation of hosts, and embedding of current and target hosts in join points to support pointcuts that can discriminate
local and remote calls, as well as the host of occurrence.

The deployment model so far supports dynamic per-host deployment of aspects with host-global scope. As illustrated
in Section 2, explicit per-host deployment of aspects with host-global scope does not suffice (even if being able to do it
dynamically is already a gain over static approaches). In this section, we refine this model to support expressive scoping of
dynamically-deployed aspects in a distributed context.

Based on an analysis of what is missing in a distributed setting, this section first sketches our proposal for expressive
scoping of distributed aspects, and shows how we can express the previous cases succinctly. We then make our proposal
precise by revisiting the semantics of Section 4 to take into account the extended execution model of Section 5. Our
definitional interpreter is updated accordingly. Finally, we define distributed scoping strategies as transformers of scoping
strategies, succinctly expressing the solutions to the examples given in Section 2.4.

6.1. Analysis of the problem

The requirements of the distributed deployment scenarios of Section 2.4 suggest that, in addition to specifying a scoping
strategy for the dynamic deployment of an aspect, one needs to be able to specify the following properties related to
distribution:

• Locality of aspect propagation: Firstly, when an aspect is propagated along the call stack [Case 1], should it be propagated
when a remote call is performed? Secondly, when an aspect is attached to a procedural value (function, object) that is
passed by copy to a remote host [Case 3], should it remain attached to the copy of that value?
• Locality of aspect activation: Whenever an aspect is dynamically deployed and propagated to various hosts [Case 2], on

what host(s) should it be active?
• User-defined notions of locality: It should be possible to express locality of propagation and activation of a dynamically-

deployed aspect based on any criteria related to the properties of the considered hosts, in order to go beyond the local-
remote-global trichotomy [Cases 1 & 3].

6.2. Distributed scoping strategies

How shall we add the above-mentioned properties to plain scoping strategies? The basic idea is to define distributed
scoping strategies as transformers over plain scoping strategies: an application t(σ ) of a strategy transformer t to a (non-
distributed) scoping strategy σ augments the latter by a specification of distributed propagation and/or activation. In this
way, scoping strategies permit to abstract over the two propagation dimensions (c for call stack and d for delayed evaluation)
and provide a single distributed propagation mechanism.

The previous analysis directly suggests the introduction of the following six simple distributed scoping strategies:

1. propagate-global: always propagate.
2. propagate-local: never propagate to other hosts.
3. propagate-remote: only propagate in remote calls.
4. active-global: always active.
5. active-local: never active in other hosts.
6. active-remote: active only in remote hosts.

By default, we consider that an aspect propagates and is active on all hosts (i.e., 1 and 4 are the default). The programmer
only needs to override this default.

The simple distributed scoping strategies above can in turn be defined in terms of two general distributed strategies
propagate-if and active-if that are parametrized by a host predicate hp. Such a predicate defines a subset of all hosts based
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on a host representation, thereby allowing for user-defined notions of locality:

• propagate-if (hp): propagate to hosts matched by hp.
• active-if (hp): active on hosts matched by hp.

6.3. Expressing the examples

Syntax. When illustrating our model with a Java-like language, we use the following variation on the CaesarJ deploy
syntax:

deploy ::= deploy[ds ](asp ){ expr }
deploy-on ::= deploy-on[ds ](asp ,expr )

As in CaesarJ, asp is simply an object that may contain pointcuts and advices. These pointcuts (and associated advices) are
only activated when the instance is deployed. Deploying an object that has no pointcuts and advices has no effect.

Since distributed scoping strategies are functions that take other strategies as parameters, we assume strategies to be
first-class values in the language. We use the bracketed syntax <...> to construct scoping strategies as values. For instance,
the dynamic scoping strategy found in both CaesarJ and AspectScheme (call stack propagation only, no filter, see 4.3) is:
dynamic = <f-true, f-false, f-true>, where f-true (resp. f-false) is the constant function that returns true (resp.
false).

Case 1.With scoping strategies, the simple aspect introduced in Section 2.4 can be directly used:

aspect Billing {
Bill bill = new Bill();
pointcut billMe(TravelInfo inf):

execution(* *.resConfirmed(TravelInfo)) && args(inf);
after(TravelInfo inf) returning: billMe(inf) {

bill.addItem(inf);
}

}

Its pointcut is not cluttered with scoping information, which is expressed when the apsect is deployed:

Strategy notBeyondDB = <!target(DBAccess), f-false, f-true>;

Booking booking = null;
deploy [(propagate-if(inTravelGroup))(notBeyondDB)](new Billing()){

booking = confirm(res);
}

The billing aspect is deployed over a dynamic extent, bound by a condition on the receiver type in order to avoid
propagating beyond the DBAccess facade. This bounded dynamic scope is expressed by the plain scoping strategy
notBeyondDB. Here, target is similar to the AspectJ pointcut designator target, selecting join points based on the type of the
target object.

The scenario also stipulates that the aspect should only propagate in hosts that belong to the TravelGroup. In order to
do so, the strategy transformer propagate-if(inTravelGroup) is applied to the strategy notBeyondDB, where the predicate
inTravelGroup selects the appropriate hosts.

If the aspect had to be deployed on all hosts, a propagate-global strategy could have been used:

deploy[propagate-global(notBeyondDB)](billing){...}

Note that the propagate-global transformer is optional because it is applied by default.

Case 2. Again, a simple profiling aspect can be used:

aspect Profiling {
pointcut Profile(): execution(* *.*(..));

before(): profile() { [...] }
after(): profile() { [...] }

}

This aspect should be attached to the client, propagated globally (the default), but only active locally. This corresponds
to the use of a deploy-on construct with an active-local strategy:

deploy-on[active-local(dynamic)](profiling, client);

where dynamic refers to the dynamic scoping strategy like in AspectScheme and CaesarJ, as defined above.
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Acall = {⟨a, σ ⟩ ∈ A | σ = ⟨c, d, f ⟩ ∧ c(njp)} (1)
Aexec = Acall ∪ closure.A (2)
Anew = {⟨a, σ ⟩ ∈ A | σ = ⟨c, d, f ⟩ ∧ d(njp)} (3)
Acopy = {⟨a, σ ⟩ ∈ A ∪ original.A | σ = ⟨c, d, f ⟩ ∧ d(njp)} (4)

Fig. 11. Revisiting scoping strategies semantics.

Case 3. As in the previous cases, the simple privacy aspect introduced in Section 2.4 can be used:
aspect Privacy {

pointcut protectMe() :
execution(String *.getAddress()) ||
execution(String *.getPhone()) || ... ;

String around() : protectMe() { return "N/A"; }
}

In this case, without considering distribution, the scoping strategy is a refinement of statically-scoped aspects a la
AspectScheme, where the aspect is captured in all objects created by the factory that are of type Traveler. With respect
to distribution, the protection aspect should only be active in objects accessed on remote hosts. As a first step, let us assume
that this is on any remote host. The deployment of the aspect is expressed as follows:
Strategy inTravelers = <f-false, target(Traveler), f-true>;
TravelerFactory factory = ...
Privacy privacy = new Privacy();

deploy-on[active-remote(inTravelers)](privacy, factory);

The construct deploy-on deploys the aspect within the factory object. Actually, the scenario stipulates that the aspect is
only active in hosts that do not belong to the TravelGroup. The scoping strategy has to be refined as follows:
deploy-on[(active-if(not(inTravelGroup)))(inTravelers)]

(privacy, factory);

To summarize, all the examples can be expressed by augmenting the plain scoping strategieswith the ability to propagate
and activate aspects depending on the host and rely on typical deploy constructs to apply these strategies. The remainder
of this section details the semantics of our proposal, by further extending our Scheme interpreter.

6.4. Refining scoping strategies

Our analysis of Section 6.1 has made clear that we need to be able to express the locality of aspect propagation
and activation. We have found that we can bring this extra expressiveness to scoping strategies by introducing the two
refinements to the executionmodel introduced in Section 5.3. It is sufficient to discriminate between call and execution join
points, and add support for copy join points to the model. The original exposition of scoping strategies [25] however only
considers function application join points. Therefore the semantics of scoping strategies as presented in Fig. 7 needs to be
revisited. The new semantics is presented on Fig. 11 (note that Aweave is unchanged).

First, to account for the separation of call and execution join points, we update the semantics of scoping strategies to
separate Aapp into two aspect environments: Acall, the set of aspects that propagate on the call stack (1), and Aexec , the set
of aspects to use during the evaluation of the body of a function (2). Note that Acall is computed on the caller side, so if an
aspect does not propagate on remote calls, it is not sent over the network.

Second, the logic of delayed evaluation propagation, d, needs to be updated to take into account function copying. We
rename Adef to Anew (3) and distinguish a new aspect environment, Acopy, which is the set of aspects that are embedded in a
function copy (4).When a function is copied, aspects captured in the original function (original.A) may ormay not propagate
in the copy: the d function of each aspect deployed in the original function receives the copy join point and decides whether
or not the aspect propagates. The other part of the definition of Acopy follows the definition of Anew: the copied function is a
newly-created function, so aspects in the current aspect environment A may be captured: the copy join point is passed to
their d propagation function.

In the following section we present the corresponding interpreter. Section 6.6 then shows that armed with these
new definitions, combined with the definition of join points augmented for distribution (with current and target hosts),
distributed scoping strategies can be expressed simply as scoping strategy transformers.

6.5. Interpretation

We now describe the semantics of our updated model of scoping strategies using an definitional interpreter. The
interpreter of Fig. 12 extends the interpreter of the higher-order distributed language (Fig. 8) with the scoping strategy
feature presented in Section 4.
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(define (eval exp E A jp) ←− 1
(cond ...

((app? exp)
(let ((cl (eval (app-fun exp) E A jp))

(args (eval-args (app-args exp) E A jp)))
(eval-app cl args A jp))))

...))

(define (eval-app cl args A jp)
(let ((njp (make-jp ’call cl args jp (get-current-host)

(target-host cl)))) ←− 2
(weave-some A njp) ←− 3
(let ((asps (collect-match-c njp A))) ←− 4

(if (fun-stub? cl)
(remote-exec cl args asps jp)
(eval-exec cl args asps jp)))))

(define (eval-exec cl args A jp)
(let ((njp (make-jp ’exec cl args jp

(get-current-host) #f))) ←− 5
(env (extend-env (closure-params cl) args (closure-env cl)))
(asps (union A (closure-aspects cl))) ←− 6

(weave-some A njp) ←− 7
(eval (closure-body cl) env asps njp)))

(define (new-function formals body E A jp)
(let* ((njp (make-jp ’new #f formals jp

(get-current-host) #f)) ←− 8
(asps (collect-match-d njp A))) ←− 9

(weave-some A njp) ←− 10
(make-closure formals body E asps)))

(define (copy-function orig A jp)
(let* ((njp (make-jp ’copy orig (closure-params orig) jp

(get-current-host) (get-target-host))) ←− 11
(asps (union (collect-match-d njp A)

(collect-match-d njp (closure-aspects orig))))) ←− 12
(weave-some A njp) ←− 13
(make-closure (closure-params orig) (closure-body)

(deep-copy (closure-env orig)) asps)))

(define (weave-some A jp) (weave (collect-match-f A jp) jp)) ←− 14

Fig. 12. Interpretation of scoping strategies for a higher-order distributed procedural language.

First of all, note that eval takes as parameter the current aspect environment, in addition to the lexical environment and
the current join point 1 . When a function is applied (eval-app), first the corresponding call join point is created 2 . The join
point embeds the current host, as well as the target host (#f if the function is not a stub). Weaving on the call join point is
then triggered 3 : weave-some uses collect-match-f to obtain Aweave, the set of all given aspects forwhich the join point filter
f yields true 14 .

Next, all aspects that propagate on the call stack as specified by their c propagation function (i.e., Acall) are gathered with
collect-match-c 4 . If the function is a stub, the remote call execution is triggered as explained in Section 5.1, additionally
passing the aspect environment Acall and the new join point as parameters.

When a function is executed (eval-exec), the corresponding execution join point is created 5 and woven 7 . The set of
aspects that potentially apply during the evaluation of the function body, Aexec , is computed 6 and evaluation proceeds.

Similarly, when a function is defined (new-function), the corresponding new join point is created 8 and woven 10 . Since
aspect weaving occurs before the actual function is created, there is no fun attribute for such a join point (#f), and the formal
parameters are given as the args attribute. The aspect environment of the closure, Anew , is obtained using collect-match-d,
passing it the newly-created join point njp 9 .

When a function is copied (copy-function), a copy join point is created 11 . If the copy occurs during the remote parameter
passing process, the join point embeds the target host information. This information is obtained using a dynamically-scoped
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variable accessor get-target-host, used to avoid cluttering all functionswith an extra parameter. The join point also embeds
the original function. Once the join point is created, the interpreter triggers weaving 13 , and creates the closure copy. The
closure captures the set of aspects Acopy, obtained by using collect-match-d with the copy join point on both the current
aspect environment, and the aspect environment of the original closure 12 .

6.6. Distributed scoping strategies

We now show how distributed scoping strategies are expressed as transformers of plain scoping strategies.
Distributed scoping strategies are transformers that take a scoping strategy as parameter and add restrictions to its

components. Recall that these components are pointcuts, so the transformations involved are pointcut compositions:
combining an existing pointcut with a pointcut that specifies distribution-related conditions.

User-defined notions of locality rely on the possibility to go beyond the local-remote-global trichotomy. The solution to
this is to support host properties and arbitrary host predicates (functions from host properties to booleans), as introduced
in Section 5.2.

Locality of propagation. Locality of aspect propagation can be obtained by placing restrictions on c and d such that we can
control when an aspect is propagated to another host: on a remote call, or when embedded in a function passed by copy.
As shown on Fig. 9, we are able to provide pointcut descriptors that capture remote calls and copies. So we can express
locality of aspect propagation by adding conditions based on the target host of the call and copy join points that are used
when evaluating the corresponding propagation functions.

More formally, let restrict-target be the following higher-order pointcut designator:

(define restrict-target
(lambda (hp) (lambda (pc) (lambda (jp)

(and (hp (target-host jp)) (pc jp))))))

Given a host predicate hp, and a pointcut pc, restrict-target returns a new pointcut, element of PC, which imposes the
restrictions of the host predicate hp on the target host of the given join point jp, in addition to the selection expressed by pc.

We can now define the general distributed scoping strategy for propagation, propagate-if (Section 6), as follows:

(define propagate-if
(lambda (hp) (lambda (<c, d, f>)

<((restrict-target hp) c),
((restrict-target hp) d), f>)))

(For the sake of conciseness, we reuse the bracketed syntax introduced in Table 1 to do pattern matching on scoping
strategies as well as to build these strategies.) Given a host predicate, propagate-if returns a strategy transformer that,
given a scoping strategy σ = ⟨c, d, f⟩, returns a new strategy σ ′ where the propagation components c and d are limited by
the host restrictions. The join point filter f is untouched.

Locality of activation. Similarly, locality of aspect activation can be obtained by restricting the f component of a scoping
strategy. In this case, the conditions are on the current host on which the aspect is residing.

Let restrict-current be the following higher-order pointcut designator:

(define restrict-current
(lambda (hp) (lambda (pc) (lambda (jp)

(and (hp (current-host jp)) (pc jp))))))

Given a host predicate hp, and a pointcut pc, restrict-current returns a new pointcut, element of PC, which imposes the
restrictions of the host predicate hp on the current host of the given join point jp, in addition to the selection expressed
by pc.

We can now define the general distributed scoping strategy for activation, active-if (Section 6), as follows:

(define active-if
(lambda (hp) (lambda (<c, d, f>)

<c, d, ((restrict-current hp) f)>)))

Given a host predicate, active-if returns a strategy transformer that, given a scoping strategy σ = ⟨c, d, f⟩, returns a new
strategy σ ′ in which the join point filter f is complemented by a host restriction. The propagation components c and d are
unchanged.

Typical scoping strategies. The six simple scoping strategies introduced in Section 6.2 are easily expressed using the general
predicate-based strategies. For instance:

(define propagate-local (propagate-if is-current)
(define active-remote (active-if is-remote)
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with the following auxiliary functions:

(define is-current (eqc? current-host))
(define is-remote (lambda (h) (not (is-current h))))

where eqc? is the curried version of eq?, and current-host is a variable defined on each host. Therefore, is-current is a
function that compares a given host to its host of origin.10

Finer-grained strategies. While distributed scoping strategies are assimilating the two propagation dimensions of scoping
strategies into a single one, it remains possible to place different distributed-related restrictions on the individual
propagation components. This makes it possible to express, for instance, that an aspect should always propagate on the call
stack whatever the host, while it should only propagate in selected hosts when captured in the environment of a procedural
value passed by remote copy.

7. The scoping scenarios revisited

We now show succinctly how the scoping scenarios defined in Section 2.4 and implemented in Section 3 using AspectJ,
CaesarJ and AWED can be implemented using our approach. We also revisit the limiting assumptions (A1), (A2), (A3) of
Section 3.1 and Section 3.3, and (B1), (B2) of Section 3.2 to establish if our approach also requires them to be made.

7.1. Scoping scenarios implemented

In Section 6.3we have expressed the example cases in a Java-like syntax. Herewe repeat these deployment scenarios, us-
ing our Scheme-like language. Recall that in the following, dynamic is the dynamic scoping strategy found in both CaesarJ and
AspectScheme (call stack propagation only, no filter, see 4.3) and is defined as <f-true, f-false, f-true>, where f-true
(resp. f-false) is the constant function that returns true (resp. false). We make use of these constant functions in different
places below.

Case 1: Controlling Propagation. The billing aspect is deployed over a dynamic extent, bound on calls to the database access,
which is performed by calling the dbaccess function. Furthermore, the aspect should only propagate in hosts that belong to
the TravelGroup, which is established by a inTravelGroup predicate. Deployment is specified as follows:

(let ((notBeyondDB <! (call dbaccess), f-false, f-true>))
(deploy (propagate-if inTravelGroup notBeyondDB) billing

(confirm reservation)))

The first line establishes the deployment strategy for the bounded dynamic scope, which is then used by the propagate-if
strategy transformer.

Case 2: Controlling Activation. The profiling aspect should propagate globally but be only active locally. This is specified
using the dynamic scoping strategy dynamic, transformed by the active-local strategy transformer:

(deploy-on (active-local dynamic) profiling client)

Case 3: Controlling Per-Object Activation. The scoping strategy used embeds the aspect in all objects created by the
make-traveler factory (playing the role of class instantiation), while the strategy transformer ensures that the aspect is
active when not inside the TravelGroup.

(let ((inTravelers <f, (call make-traveler), f-true))
(deploy-on (active-if (not inTravelGroup) inTravelers) privacy factory))

7.2. Implementation assumptions revisited

In Section 3 we needed to make three limiting assumptions (A1), (A1), (A3) when attempting the implementation with
AspectJ, two assumptions with CaesarJ (B1), (B2) and for AWED the assumption (A1) needed to be taken. We revisit these
assumptions and assert whether these need to be made when using our approach.

A1:We need to be able to weave all affected classes and update them in a consistent way across the entire distributed
system.

In our approach aspects are dynamically deployed, and properly follow both execution flows and objects as required,
without having to prepare the involved sites in any way. Therefore this assumption does not need to be made.

10 Here, it is particularly important to use a curried version of eq? because, as is typical in distributed systems, current-host is a dynamically-scoped
variable. In is-current, we need however to capture the host bound to current-host where it is defined, not where it is used; currification ensures this.
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A2: For all method executions in the distributed control flow that we wish to capture, there is at least one parameter
obj that exists at the beginning of the control flow and is reachable at that point.

A3: (A copy of) the above parameter obj is not stored within this control flow and later retrieved, nor is it
concurrently accessed.

Both these assumptions were required because AspectJ does not provide support for distributed control flow. As our
approach does provide support for distributed control flow, these assumptions do not need to be made.

B1: The weather server is the only server outside of the travel group.

In CaesarJ specific host information cannot be tested at the pointcut level, and host information is not available to the
advice. Eliminating propagation outside of the travel group needs to be done by a cflow test verifying calls to the weather
server. In our approach host information can be tested by the pointcut, so this assumption does not need to be made.

B2: The travel agent client is not multi-threaded and does not perform other computations than the ones we are
interested in.

This assumption needed to be made because in CaesarJ aspects cannot be deactivated along a distributed control flow.
In our approach this is possible, as a result this assumption does not need to be made.

To sum up, our approach effectively addresses the issues raised with respect to other proposals, because none of the
stated assumptions need to be made. We elaborate on a specific feature that is particularly relevant, runtime weaving, in
Section 8.2 below.

8. Discussion

We now briefly discuss the major limitations of our approach, and the perspectives they open. We also report on what
lessons can be learned from this experiment with respect to implementations of aspect weaving.

8.1. Limitations and perspectives

This work introduces a general notion of aspect scoping for distributed programming. Our model includes first-class
pointcuts and advices, and as such, completely supports applying aspects to other aspects. The model deals with the
potentially remote execution of both pointcuts and advices, and exposes four kinds of join points: call and execution,
creation, and copy. The latter is rather unusual in mainstream aspect languages, but is essential in order to control by-copy
remote parameter passing.

Intentionally, we do not address other crucial issues for distributed aspects, in particular, different underlying
communication models. We consider only a simple, purely synchronous model for remote communication, with no
particular regard to concurrency. While this corresponds to a wide range of distributed applications, the treatment of
concurrency deserves more attention. For instance, in very dynamic distributed contexts like Ambient Intelligence —where
dynamic deployment is a highly valuable feature— languages typically adopt an asynchronous communicationmodel, e.g. (a
variant of) the actor model. Scoping mechanisms need to be refined for properly dealing with these specific assumptions.

This work provides a very expressive model for the propagation of aspects and remote behavior resulting from their
activation. This expression power should be counterbalanced by means for the analysis and enforcement of propagation
and activation properties, for instance to control aspectual effects and thereby preventing programming errors or enforcing
security properties of the resulting distributed applications.

Finally, our model stays at a level of abstraction where function stubs are transparent at the language level. It is possible
to devise a lower-level model where stubs are visible and hence deploying aspects on stubs become possible. This may
enable the expression, using aspects, of more advanced distribution scenarios like smart proxies, where a stub memorizes
results of remote invocations.

8.2. On the necessity of runtime weaving

Beyond the proposal of scoping strategies, thiswork reports on a reasonably extensive case studywith distributed aspect-
oriented programming. Section 3 describes various attempts at implementing advanced scoping scenarios with AspectJ and
RMI, CaesarJ, and AWED. From the issues we encountered with these systems, a clear lesson can be drawn with respect to
the implementation strategy of aspects.

Folklore has it that aspectweaving is a compile-time process.While clearly incorrect from a conceptual point of view, this
belief reflects the fact that AspectJ, and many AOP languages, are implemented using (source or byte) code transformation,
prior to runtime. Code transformation consists of merging (the statically-determinable bits of) aspects with the application
code. This implementation strategy has the merit of being efficient. It is, however, less expressive than seeing weaving as a
runtime process, because some ties between aspects and base code cannot easily be undone dynamically. In a distributed
setting, this means that aspects get woven and hardwired into serialized data, leading to the versioning issues we have
reported. Dynamic weaving has received a lot of attention as well, especially from the research community, and it has been
shown that aspect-aware execution environments can be both flexible and efficient [5–7,21].

From the experience reported in this paper, a strong limitation of compile-time weaving is made evident: if done
statically, aspect weaving interferes with class versioning. The issue of maintaining a consistent code base in a distributed
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system is already far from trivial in a non-AOP setting. If aspect weaving affects base code, the consistency issue appears
each time a different set of aspects is used in one of the hosts of the distributed system. In contrast, by maintaining aspects
separate from base code and leaving the responsibility of weaving to the runtime, the code consistency issue is not affected.
Furthermore, runtimeweaving enables the manipulation of aspect environments as described in this paper. Therefore, both
code consistency in the presence of versioning and expressive scoping can be achieved through runtime weaving.

Finally, the coordinated and flexible application of aspects to different parts of a distributed systems is very difficult to
handle using static aspect weaving but also far from trivial if dynamic aspect weaving is used: Truyen and Joosen [30] have
proposed a notion of atomic weaving of dynamic aspects that requires substantial non-standard infrastructure support;
the AWED system has been extended by causal relationships between events to ensure coordinated aspect application [2].
Distributed scoping strategies as introduced in this paper provide a different, promising approach to this problem: consistent
deployment is facilitated by decoupling the deployment proper by means of an expressive deployment language from the
aspect implementation itself that is done taking a view local to where it is initially deployed.

9. Conclusion

Expressive scoping of dynamically-deployed aspects enhances the potential benefits of aspects in terms of applicability,
reuse, and performance by allowing the programmer to defer deployment-related decisions to run-time. Proper aspect
scoping is even more crucial in distributed systems so as to avoid inconsistencies due to the decentralized and dynamic
nature of these systems. Current aspect languages for distribution however have only very limited support for scoped or
dynamic deployment, if any.

In this paper we have discussed the limitations of existing aspect languages in this regard and have provided a number of
scenarios that motivate the need for expressive scoping of distributed aspects. To achieve this, we have extended previous
work on scoping strategies [25,26] to deal with the distribution dimension of scoping. In the line of previous research, as
well as the Aspect SandBox project [16,17,31], we have given the operational semantics of our proposal as a concise Scheme
interpreter.

Distributed scoping strategies provide precise control over the two locality dimensions of aspects in distributed systems:
propagation and activation. To achieve this, previous work on scoping strategies is augmented with an extended join
point model that, in particular, exposes information about remote calls and copies, as well as about hosts. We then
express distributed scoping strategies as transformers of plain scoping strategies. Because scoping strategies are specified
dynamically, outside of aspect definitions, aspects can be reused in both non-distributed and different distributed settings.

As a result the solution space for scoping of dynamically-deployed aspects in distributed systems has been explored.
Support for such scoping will greatly aid in developing distributed systems using aspects, enabling better reuse of aspects
as well as permitting the evolution of such systems. This is especially relevant as this domain is well-known for being
particularly subject to crosscutting concerns.

References

[1] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, Klaus Ostermann, An overview of CaesarJ, in: Transactions on Aspect-Oriented Software Development,
in: Lecture Notes in Computer Science, vol. 3880, Springer-Verlag, 2006, pp. 135–173.

[2] Luis Daniel Benavides Navarro, Rémi Douence,Mario Südholt, Debugging and testingmiddlewarewith aspect-based control-flow and causal patterns,
in: Proceedings of the 9th ACM/IFIP/USENIX International Middleware Conference, Leuven, Belgium, Springer-Verlag, 2008.

[3] Luis Daniel Benavides Navarro, Mario Südholt, Wim Vanderperren, Bruno De Fraine, Davy Suvée, Explicitly distributed AOP using AWED,
in: Proceedings of the 5th ACM International Conference on Aspect-Oriented Software Development, AOSD 2006, Bonn, Germany, ACM Press, 2006,
pp. 51–62.

[4] Lodewijk Bergmans, Mehmet Akşit, Composing crosscutting concerns using composition filters, Communications of the ACM 44 (10) (2001) 51–57.
[5] Christoph Bockisch, Matthew Arnold, Tom Dinkelaker, Mira Mezini, Adapting virtual machine techniques for seamless aspect support, in: OOPSLA

2006 [20], ACM SIGPLAN Notices, 41(10), pp. 109–124.
[6] Christoph Bockisch, Sebastian Kanthak, Michael Haupt, Matthew Arnold, Mira Mezini, Efficient control flow quantification, in: OOPSLA 2006 [20],

ACM SIGPLAN Notices, 41(10), pp. 125–138.
[7] Christoph Bockish, Michael Haupt, Mira Mezini, Klaus Ostermann, Virtual machine support for dynamic join points, in: Lieberherr [15], pp. 83–92.
[8] Bruno De Fraine, Mathieu Braem, Requirements for reusable aspect deployment, in: Markus Lumpe, Wim Vanderperren (Eds.), Proceedings of the 6th

International Symposium on Software Composition, SC 2007, Braga, Portugal, in: Lecture Notes in Computer Science, vol. 4829, Springer-Verlag, 2007.
[9] Christopher Dutchyn, David B. Tucker, Shriram Krishnamurthi, Semantics and scoping of aspects in higher-order languages, Science of Computer

Programming 63 (3) (2006) 207–239.
[10] Matthias Felleisen, On the expressive power of programming languages, Science of Computer Programming 17 (1991) 35–75.
[11] Daniel P. Friedman, Mitchell Wand, Christopher T. Haynes, Essentials of Programming Languages, 2nd ed., The MIT Press, 2001.
[12] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, William Griswold, An overview of AspectJ, in: Jorgen L. Knudsen (Ed.),

Proceedings of the 15th European Conference on Object-Oriented Programming, ECOOP 2001, in: Lecture Notes in Computer Science, vol. 2072,
Springer-Verlag, Budapest, Hungary, 2001, pp. 327–353.

[13] Ramnivas Laddad, AspectJ in Action: Practical Aspect-Oriented Programming, Manning Press, 2003.
[14] Bert Lagaisse, Wouter Joosen, True and transparent distributed composition of aspect-components, in: Maarten van Steen, Michi Henning (Eds.),

Proceedings of the 7th ACM/IFIP/USENIX International Middleware Conference, Middleware 2006, in: Lecture Notes in Computer Science, vol. 4290,
Springer-Verlag, Melbourne, Australia, 2006, pp. 42–61.

[15] Karl Lieberherr (Ed.), Proceedings of the 3rd ACM International Conference on Aspect-Oriented Software Development, AOSD 2004, Lancaster, UK,
ACM Press, 2004.

[16] Hidehiko Masuhara, Gregor Kiczales, Modeling crosscutting in aspect-oriented mechanisms, in: Luca Cardelli (Ed.), Proceedings of the 17th European
Conference on Object-Oriented Programming, ECOOP 2003, in: Lecture Notes in Computer Science, vol. 2743, Springer-Verlag, Darmstadt, Germany,
2003, pp. 2–28.



É. Tanter et al. / Science of Computer Programming 75 (2010) 1235–1261 1261

[17] Hidehiko Masuhara, Gregor Kiczales, Christopher Dutchyn, A compilation and optimization model for aspect-oriented programs, in: G. Hedin (Ed.),
Proceedings of Compiler Construction, CC2003, in: Lecture Notes in Computer Science, vol. 2622, Springer-Verlag, 2003, pp. 46–60.

[18] Mira Mezini, Klaus Ostermann, Object creation aspects with flexible aspect deployment. Technical report, Technische Universität Darmstadt, 2003.
[19] Muga Nishizawa, Shigeru Chiba, Michiaki Tatsubori, Remote pointcut — a language construct for distributed AOP. In Lieberherr [15], pp. 7–15.
[20] Proceedings of the 21st ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications, OOPSLA 2006, Portland,

Oregon, USA, October 2006. ACM Press. ACM SIGPLAN Notices, 41(10).
[21] Andrei Popovici, Gustavo Alonso, Thomas Gross, Just-in-time aspects: efficient dynamic weaving for Java, in: Mehmet Akşit (Ed.), Proceedings of the

2nd ACM International Conference on Aspect-Oriented Software Development, AOSD 2003, Boston, MA, USA, ACM Press, 2003, pp. 100–109.
[22] Hridesh Rajan, Kevin Sullivan, Eos: Instance-level aspects for integrated system design, in: Proceedings of ESEC/FSE 2003, Helsinki, Finland, 2003,

pp. 297–306.
[23] SUN Microsystems, Remote Method Invocation, 1998.
[24] Éric Tanter, Controlling aspect reentrancy, Journal of Universal Computer Science 14 (21) (2008) 3498–3516.
[25] Éric Tanter, Expressive scoping of dynamically-deployed aspects, in: Proceedings of the 7th ACM International Conference on Aspect-Oriented

Software Development, AOSD 2008, Brussels, Belgium, ACM Press, 2008, pp. 168–179.
[26] Éric Tanter, Beyond static and dynamic scope, in: Proceedings of the 5th ACMDynamic Languages Symposium, DLS 2009, Orlando, FL, USA, ACM Press,

2009, pp. 3–14.
[27] Éric Tanter, Higher-order aspects in order, in: Scheme and Functional Programming Workshop, Boston, MA, USA, 2009.
[28] Éric Tanter, Johan Fabry, Rémi Douence, Jacques Noyé, Mario Südholt, Expressive scoping of distributed aspects, in: Proceedings of the 8th ACM

International Conference on Aspect-Oriented Software Development, AOSD 2009, Charlottesville, Virginia, USA, ACM Press, 2009, pp. 27–38.
[29] Éric Tanter, Rodolfo Toledo, A versatile kernel for distributed AOP, in: Proceedings of the IFIP International Conference on Distributed Applications

and Interoperable Systems, DAIS 2006, in: Lecture Notes in Computer Science, vol. 4025, Springer-Verlag, Bologna, Italy, 2006, pp. 316–331.
[30] Eddy Truyen, Wouter Joosen, Run-time and atomic weaving of distributed aspects, Transactions on Aspect-Oriented Software Development II 4242

(2006) 147–181.
[31] Naoyasu Ubayashi, Genki Moriyama, Hidehiko Masuhara, Tetsuo Tamai, A parameterized interpreter for modeling different AOP mechanisms,

in: Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering, Long Beach, CA, USA, ACM Press, 2005,
pp. 194–203.

[32] Mitchell Wand, Gregor Kiczales, Christopher Dutchyn, A semantics for advice and dynamic join points in aspect-oriented programming, ACM
Transactions on Programming Languages and Systems 26 (5) (2004) 890–910.


	Scoping strategies for distributed aspects
	Introduction
	The case for dynamic deployment of distributed aspects
	Issues with static deployment
	Dynamic deployment of aspects
	Dynamic distributed aspect deployment
	Expressive scoping scenarios
	Case 1: Controlling propagation
	Case 2: Controlling activation
	Case 3: Controlling per-object activation


	Tentative implementation
	AspectJ implementation
	Case 1: Controlling propagation
	Case 2: Controlling activation
	Case 3: Controlling per-object activation
	Summary of limitations

	CaesarJ implementation
	Case 1: Controlling propagation
	Case 2: Controlling activation
	Case 3: Controlling per-object activation
	Summary of limitations

	AWED implementation
	Case 1: Controlling propagation
	Case 2: Controlling activation
	Case 3: Controlling per-object activation
	Summary of limitations


	Scoping of non-distributed aspects
	Base language
	Aspects
	Non-distributed scoping strategies

	A model of distributed aspects
	Adding distribution
	Distributed aspects
	Extending the execution model

	Scoping of distributed aspects
	Analysis of the problem
	Distributed scoping strategies
	Expressing the examples
	Refining scoping strategies
	Interpretation
	Distributed scoping strategies

	The scoping scenarios revisited
	Scoping scenarios implemented
	Implementation assumptions revisited

	Discussion
	Limitations and perspectives
	On the necessity of runtime weaving

	Conclusion
	References


