
Expressive Scoping of Distributed Aspects∗

Éric Tanter Johan Fabry
PLEIAD Laboratory

Computer Science Department (DCC)
University of Chile – Santiago, Chile

http://pleiad.dcc.uchile.cl

Rémi Douence Jacques Noyé
Mario Südholt

Département Informatique
École des Mines de Nantes, France

http://www.emn.fr/x-info/ascola/

ABSTRACT
Dynamic deployment of aspects brings greater flexibility and reuse
potential, but requires proper means for scoping aspects. Scop-
ing issues are particularly crucial in a distributed context: adequate
treatment of distributed scoping is necessary to enable the propaga-
tion of aspect instances across host boundaries and to avoid incon-
sistencies due to unintentional spreading of data and computations
in a distributed system.

We motivate the need for expressive scoping of dynamically-
deployed distributed aspects by an analysis of the deficiencies of
current approaches for distributed aspects. Extending recent work
on deployment strategies for non-distributed aspects, we then intro-
duce a set of high-level strategies for specifying locality of aspect
propagation and activation, and illustrate the corresponding gain in
expressiveness. We present the operational semantics of our pro-
posal using Scheme interpreters, first introducing a model of dis-
tributed aspects that covers the range of current proposals, and then
extending it with dynamic aspect deployment. This work shows
that, given some extensions to their original execution model, de-
ployment strategies are directly applicable to the expressive scop-
ing of distributed aspects.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed Programming

General Terms
Languages, Design

∗This work is partially funded by the INRIA/CONICYT project
CORDIAL, and the FONDECYT projects 11060493 (É. Tanter)
and 1090083 (J. Fabry & É. Tanter).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’09, March 2–6, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-442-3/09/03 ...$5.00.

Keywords
Aspect-oriented programming, distribution, dynamic deployment,
scope, Scheme, operational semantics.

1. INTRODUCTION
In the pointcut-advice model of aspect-oriented program-

ming [11, 20], as embodied in e.g. AspectJ [8], crosscutting behav-
ior is defined by means of pointcuts and advices. A pointcut is a
predicate that matches program execution points, called join points,
and an advice is the action to be taken at a join point matched by
a pointcut. An aspect is a module that encompasses a number of
pointcuts and advices. The scope of an aspect is the set of join
points the aspect sees, i.e. against which its pointcuts are matched.

A major challenge in aspect language design is to cleanly and
concisely express where and when aspects should apply. If aspects
potentially see any join point, expressive pointcut languages are the
only way to restrict the scope of aspects. However, as repeatedly
recognized [1, 5, 12, 16], this can lead to complex pointcut defini-
tions and sacrifices the reuse potential of aspects.

In a distributed system, a new dimension for scoping appears:
dealing with the different execution hosts. Distributed AOP can be
achieved by combining a normal aspect language like AspectJ with
a form of remote procedure call, but this has severe limitations. To
tackle these limitations, several distributed aspect languages and
frameworks have been proposed [3, 13, 18]. In these proposals,
however, aspect deployment is still done statically; leaving the bur-
den of proper scoping to cumbersome pointcut definitions. In addi-
tion, if deployment is not done properly, incompatibility errors or
unexpected (non-)application of aspects can occur. These issues,
along with related work, are further discussed in Section 2.

Expressive scoping of dynamically-deployed aspects, as par-
tially supported by several languages like CaesarJ [1] and As-
pectScheme [6], is therefore required for distributed aspect-
oriented programming. Recently, Tanter has introduced the de-
ployment strategy model [16], which supersedes other proposals by
giving programmers very fine-grained control over the scope of an
aspect. However, this model does not take distribution into account.
This paper explores the issue of expressive scoping of distributed
aspects, allowing advanced distributed scoping strategies to be con-
veniently expressed. Examples are aspects that propagate only on
certain hosts, or that “follow” particular objects as they are sent
over the network. We further illustrate such scenarios in Section 3.

To address the issue of expressive scoping of distributed aspects,
we introduce a set of high-level strategies that specify locality of
aspect propagation and activation, complementing the existing pro-
posal of deployment strategies. Section 4 gives an informal pre-
sentation of our proposal and shows how distributed deployment
strategies concisely express the scenarios considered in Section 3.

27

Section 5 presents a small operational model of distributed aspects
based on a progressively-extended Scheme interpreter. Section 6
dives into deployment strategies in a distributed setting, expound-
ing the semantics of our proposal. Section 7 concludes.

2. THE CASE FOR DYNAMIC DEPLOY-
MENT OF DISTRIBUTED ASPECTS

The distribution and scoping features of existing models used
for aspect-oriented programming of distributed applications can
roughly be classified into three categories:

i) No explicit mechanisms for distribution are provided but a lo-
cal aspect model is used to manipulate an underlying distributed
infrastructure. Examples of this category comprise AspectJ [8], ap-
plied to RMI-based applications, as well as JBoss AOP and Spring
AOP, applied to Enterprise JavaBeans applications. Aspects essen-
tially have global scope in these models, a notable exception be-
ing aspects instantiated only on creation of base entities, such as
AspectJ’s feature for per-target or per-cflow instantiation.

ii) The localization of join points can be explicitly referred to in
order to make aspects, in particular pointcut matching, distribution-
aware. This is the main characteristics of the models of remote
pointcuts [13], Aspects with Explicit Distribution (AWED) [3, 2],
DyMAC [9], and ReflexD [18]. Note that, while these mod-
els are mostly static, some of them contain dynamic mechanisms
(e.g. AWED allows host groups to be modified dynamically). In ad-
dition to the scoping features of the previous category, these models
also partially include explicitly-defined distributed scopes (e.g., de-
ployment on groups of hosts in AWED and ReflexD).

iii) Mechanisms that allow aspects to be deployed on entities of
the base application such that the scope of aspects is implicitly lim-
ited to occurrences of distributed join points that are generated by
the execution of those entities. For example, CaesarJ [1], allows as-
pects to be deployed dynamically such that they are only triggered
within the (distributed) control-flow of certain method calls.

2.1 Issues with Static Deployment
In most aspect languages, aspects are deployed statically, i.e. be-

fore execution time, and have global scope. Restricting the scope
of an aspect can only be done by introducing extra conditions in the
pointcut definitions. This however renders pointcut definitions un-
necessarily complex and sacrifices the reuse potential of aspects [1,
5, 12, 16]. Moreover, the exact dynamic patterns under which an
aspect should be effective may be very hard or impossible to fore-
see and express statically in the aspect definition.

In a distributed setting, static deployment of aspects with global
scope is even more problematic, because the mere notion of
“global” is not necessarily straightforward to define. Consider a
case where AspectJ is used in conjunction with RMI. Static weav-
ing creates new versions of the potentially impacted classes, which
then have to be loaded on all the hosts in a consistent way. If not,
a problem occurs when a host has loaded the aspect-free version of
a class and receives an instance of the woven version of the same
class. Two equally unsatisfactory scenarios are possible: either a
class version exception is thrown, or the aspect does not apply1.

The above issue is not the sole issue: such approaches cannot
directly express relationships between different distributed enti-
ties [13]. As a consequence, pointcuts that relate join points, like
cflow, will not work in a distributed setting. To address this,

1Technically, in Java RMI, this depends on whether or not the af-
fected class declares a consistent classVersionUID field in both
hosts. If so, the aspect does not apply. Otherwise, classes from both
hosts are considered incompatible [15].

several aspect languages with explicit distribution features have
been proposed. These languages are more robust and expressive
than a simple combination of an aspect language and a middle-
ware for distribution. DJcutter [13], for instance, introduced the
idea of discriminating join points based on their host of occurrence
and thus solves the distributed control flow problem; some, like
ReflexD [18], give flexible control over the placement of advice in-
stances in the system or, like AWED [2], make it possible to exploit
causal orderings between join points on different hosts.

These distributed aspect systems typically offer programmatic
means to specify aspect deployment, more convenient than ad-hoc
startup-time code. But —apart from CaesarJ, discussed below—
deployment in these languages remains an activity that has be spec-
ified without referring to run-time information, such that aspects
are deployed on all hosts where they may potentially apply. If not,
aspects may not apply when expected.

2.2 Dynamic Deployment of Aspects
Dynamic deployment of aspects addresses the issues of static

deployment by avoiding the cluttering of pointcut definitions with
cumbersome dynamic conditions. It augments the reuse potential
of aspects by allowing certain scoping decisions to be deferred to
aspect deployment time.

Dynamic deployment of aspects is usually found in more expres-
sive aspect languages where aspects are (at least to some extent)
first-class entities. For instance, in CaesarJ, aspects are just objects
that happen to have some pointcuts as attributes. A language like
AspectScheme [6] goes further, since both pointcuts and advices
are first-class functions, enjoying the full power of higher-order
programming patterns. This is in sharp contrast with languages like
AspectJ and AWED where aspects are mostly first-order entities.

Some approaches offer dynamic deployment with global
scope [1, 6], however the semantics of this mechanism in presence
of multi-threaded programs is unclear. In contrast, several struc-
tured dynamic deployment mechanisms have been provided, with
clearer semantics. For instance, both CaesarJ and AspectScheme
support a dynamically-scoped (thread local) deployment construct,
like deploy(asp){block}, whereby the aspect instance asp sees
any join point produced in the dynamic extent of the execution of
block. AspectScheme also supports statically-scoped deployment,
in which the aspect instance asp sees any join point produced lexi-
cally in the body of block (including in future applications of func-
tions that may escape the block). This resembles per-object deploy-
ment [1, 14], like deploy-on(obj,asp), whereby asp sees any
join point that occurs in the context of the object obj.

To unify and subsume all these variants of scoping semantics
for dynamically-deployed aspects, Tanter has proposed deployment
strategies [16]. A deployment strategy specifies the scoping of
an aspect through three components: how it should propagate on
the call stack (dynamic scoping dimension), how it should prop-
agate along created procedural values (static scoping dimension),
and if the pointcuts of the aspect should be refined locally for a
given deployment. These components are themselves pointcuts.
For instance, consider the following (artificial) banking example:
We wish to use a general-purpose logging aspect log to log all
modifications of the list of lenders on an open loan. Such modifica-
tions only happen in calls to Loan objects with a Client parameter.
Also, this will never happen beyond the database facade DBAccess.
The following code deploys log over execution of block:
deploy[!target(DBAccess),target(Loan),

if(argOfType(Client))](log){ block }

The deployment strategy specifies that (a) the aspect sees all join
points in the dynamic extent of the block except when the target of

28

class TravelService {
...

Booking bookPackage(FlightSpec fsp, RoomSpec rsp,
Traveler trv, Selector sel){

FlightsInfo ft = DBAccess.current.reserve(trv,fsp);
RoomsInfo rm = hotelService.reserve(trv,rsp);
Reservation res = sel.pick(ft,rm);
return confirm(res);

}
Booking confirm(Reservation res){
... confirm the reservations ...
... obtain weather information ...
... complete travel info and return ...

} }

Figure 1: Section of the travel service: booking of a package

a call is of type DBAccess; (b) the aspect is captured in all created
Loan objects so that it will see join points produced in their context,
even if they happen outside of the dynamic extent of the block); (c)
logging is refined to apply only if a join point has an argument of
type Client. Deployment strategies subsume existing proposals
and enhance aspect reusability by giving fine-grained control over
the scope of dynamically-deployed aspects [16].

2.3 Dynamic Distributed Aspect Deployment
CaesarJ is the only aspect language with dynamic deployment

that supports distribution to some extent. Beyond global deploy-
ment, CaesarJ supports a structured form of dynamic deployment,
on a distributed control flow. The advantage of this solution over
static deployment approaches is that the aspect is automatically de-
ployed on the control flow in remote hosts as needed. This avoids
the different problems mentioned in Section 2.1.

Distributed per-thread deployment is however but one point in
the design space of distributed aspect scoping semantics (per-this
deployment in CaesarJ only works locally). Conversely, deploy-
ment strategies cover that space, but are formulated in a non-
distributed context. This paper therefore explores support for ex-
pressive scoping of distributed aspects, by proposing means to aug-
ment the power of deployment strategies to express distribution-
related constraints on the scope of deployed aspects.

3. EXPRESSIVE SCOPING SCENARIOS
We now present several distributed scenarios for which existing

languages provide insufficient deployment support. We informally
describe a number of deployment strategies that solve these scenar-
ios. Section 4 then overviews our proposal and concisely expresses
these desired strategies. Recall that the focus of this work is to pro-
vide expressive scoping through the use of deployment strategies.
The modification of pointcuts by adding extra conditions to yield
similar scoping results is considered a poor substitute, as discussed
in Section 2.1 and [16]. So we wish to avoid such modifications.

Running Example. As a running example we consider a typical
client-server system for travel agents. Travel agents use the client
application to book travel packages that include a flight and hotel
reservation. The travel server application handles flight booking lo-
cally, but delegates hotel reservations to a secondary booking server
of another company. As a courtesy, the typical climate conditions
for the destination at that time are also supplied to the traveler. For
this a free weather service is used.

To book a package, the travel agent specifies constraints on
flights and hotels, and sends a request to the travel server. The travel
server gathers candidate reservations, of which a combination is se-

Travel Agent Client Travel Server

Weather Server Hotel Server

B
DBAccess

P

Legend

privacy
aspect

object

control
flow

aspect
deploy

B billing
aspect

bookPackage(..., ,...)trv

P

Figure 2: Travel agent system, focusing on the confirm phase.
Privacy and billing aspects deployed

lected by letting the travel agent pick items from a list. An outline
of the travel server code for this scenario is shown in Figure 1. The
trv and sel parameters of the bookPackage service respectively
contain relevant information of the traveler, and the object used as
a callback to select reservations. Figure 2 illustrates the reservation
confirmation phase, with deployment of a billing aspect.

In this system, we want to implement a Billing aspect, using an
implementation of the wormhole pattern, to avoid cluttering the pa-
rameter list of the different functions involved with an extra billing
parameter. The implementation of this aspect is shown below:

aspect Billing {
Bill bill = new Bill();
pointcut billMe(TravelInfo inf):

execution(* *.resConfirmed(TravelInfo)) && args(inf);
after(TravelInfo inf) returning: billMe(inf) {

bill.addItem(inf); } }

When confirming a reservation, the travel server as well as the
booking server first verify if the candidate reservations are still
valid (e.g. they have not expired). They then call a resConfirmed
method on themselves, the argument type of which is a superclass
of FlightsInfo and RoomsInfo, to update their internal book-
keeping. The name and parameter list of this method is fixed by
convention, which allows the Billing aspect to apply.

An implementation of the Billing aspect using AWED requires
changing the billMe pointcut as follows:

pointcut billMe(TravelInfo inf):
execution(* *.resConfirmed(TravelInfo)) && args(inf)

&& host(TravelGroup) 1
&& cflow(call(* TravelService.confirm(..))); 2

In this pointcut, in 1 , TravelGroup is a group of hosts, explicitly
defined as {travelServer, hotelServer}. This means that the
distribution setup is embedded in the pointcut definition. Also, the
pointcut must explicitly define the control flow of interest in 2 .
Reusing Billing in a different context or with a different deploy-
ment strategy would require yet another rewrite of the pointcut.

A better solution is to use CaesarJ as it provides for dynamic
deployment on a distributed control flow. An example of this is
changing the confirm call to the code below2:
2CaesarJ actually provides an API rather than specific syntax for
this type of deployment [1]. For consistency with the rest of this
paper we assume the existence of some syntactic sugar for these
API calls.

29

deploy-distcflow(new Billing()){ return confirm(res); }

The example shows how dynamic deployment enables reuse of an
aspect as the pointcut of the Billing aspect remains unchanged.

3.1 Case 1: Controlling propagation
Let us refine the example, to address two issues: a) the aspect

propagates to the free weather service, where it will never apply;
b) in the travel server we know that behind the database facade
DBAccess no resConfirmed call will ever be made, so we should
not propagate the Billing aspect beyond the facade. We therefore
want to change the previous deployment to a specific deployment
strategy, say, deploy-TravelGroup-cflow-except-DBAccess
that cuts propagation at these points. This would be achieved by
changing the call to confirm as below:

deploy-TravelGroup-cflow-except-DBAccess(new Billing()){
return confirm(res);

}

However, CaesarJ does not provide for such a deployment strategy
as there is no way to control propagation based on a target host or
receiver type. AWED has the advantage that it does provide control
of propagation on hosts (the TravelGroup in the example), how-
ever it does not allow for specification of filtering out propagation
on receiver type, and has static deployment.

3.2 Case 2: Controlling activation
Suppose that performance information needs to be gathered from

the client. We wish to reuse an existing Profiling aspect (that
uses a generic execution(* *.*(..)) pointcut). This requires
the aspect to be deployed such that the entire control flow of the
package booking front-end is captured. However we must exclude
the computation of the server, invoked through the bookPackage
remote method. This yields the following deployment:

deploy-active-locally(new Profiling()){ booking code };

The deploy-active-locally strategy is not equal to simply
stopping propagation at the host boundary. This is because there
is a callback from the server to the Selector object given as pa-
rameter to the bookPackage method. Recall that this callback pops
up a dialog box that allows the travel agent to pick among proposed
reservations for a given package. We also want to gather profiling
information for these dialog boxes.

Again, this deployment strategy cannot be expressed in current
distributed aspect-oriented languages. CaesarJ’s dynamic deploy-
ment on a distributed control flow does not allow specification of
deactivation on given hosts. We can achieve similar scoping with
AWED, but with a reuse cost as the pointcut must be modified.

3.3 Case 3: Controlling per-object activation
As a last example, consider the Traveler object passed to the

travel service server. This object contains all the traveler informa-
tion the client has, including e.g. address and phone number. For
privacy reasons the client must not reveal such information to hosts
outside of the TravelGroup. The interface to the different servers
however must not be changed (e.g. to use a new restricted inter-
face), so this feature is implemented using a Privacy aspect as
follows:

aspect Privacy {
pointcut protectMe() :

execution(String *.getAddress()) ||
execution(String *.getPhone()) || ... ;

String around() : protectMe(){ return "N/A"; }}

The aspect overrides selected getter functions to return "N/A". In
this scenario, we want the Privacy aspect to be embedded in all
Traveler objects, which happen to be obtained from a factory:

TravelerFactory fact = ...
Privacy priv = new Privacy();
deploy-in-Traveler-inactive-TravelGroup(priv, fact);

The different deployment syntax is due to such embedding be-
ing different from deployment on execution, as seen in the pre-
vious two cases. Here, similarly to statically-scoped aspects in As-
pectScheme, the aspect is deployed in the factory and propagates
on object creation, with the restriction that the object being created
is of class Traveler. Being embedded in Traveler objects cre-
ated by the client, the aspect follows these objects as they are sent
over the network, as depicted on Figure 2. In addition, the deploy-
ment strategy specifies that the aspect is only active on (untrusted)
hosts that are not part of the TravelGroup.

It is impossible to achieve this scoping semantics using current
proposals that support per-object aspects, AspectJ and CaesarJ, be-
cause these only work locally. Furthermore, even if it would work
in a distributed setting, deploying the aspect on the factory will
not further propagate it on objects created by the factory. While
this could be addressed using an auxiliary deployment aspect, we
would still be unable to control activation based on host properties.

4. SCOPING OF DISTRIBUTED ASPECTS
The previous examples illustrate that relevant scenarios of dy-

namic distributed aspect deployment are not well-served by state-
of-the-art distributed aspect languages and frameworks. After an
overview of plain deployment strategies and a brief analysis of what
is missing in a distributed setting, this section sketches our propo-
sal for expressive scoping of distributed aspects, and shows how we
can express the previous cases succinctly. A detailed description of
the semantics of our proposal is deferred to Sections 5 and 6.

4.1 Plain Deployment Strategies
(Non-distributed) deployment strategies, also called here plain

strategies in order to avoid possible ambiguities, have been intro-
duced by Tanter as a particularly expressive mechanism to specify
the scoping of dynamically-deployed aspects [16]. In brief, a de-
ployment strategy is a specification of the form δ〈c, d, f〉, where c
and d are propagation functions used to specify, respectively, call
stack propagation and propagation within delayed evaluation (cre-
ated functions or objects), and f is a join point filter used to ex-
press deployment-specific filtering of the join points seen by the
deployed aspect. All three components are pointcuts, i.e. they take
a join point as parameter and return a boolean.

Dynamic aspect deployment is then performed with a deploy-
ment expression: deploy(a, δ〈c, d, f〉, e), where e is a reducible
expression. Aspect a is deployed during the evaluation of e, with
propagation strategy δ. Additionally, in this paper we also use the
ability to deploy an aspect on an existing procedural value using
deploy-on(a, δ〈c, d, f〉, e). In this case, e is first reduced to a pro-
cedural value. Aspect a is deployed within that value, with prop-
agation strategy δ. In a functional (resp. object-oriented) setting,
this means that a is deployed over the evaluation of the function
body (resp. method bodies), each time the function (resp. one of
the methods) is applied3.
3As discussed in [16], deploy-on is more powerful than per-
instance aspect deployment as found in CaesarJ, composition fil-
ters [4], and AspectJ’s per-this aspects, because in these proposals,
aspects do not propagate (i.e. they are deployed on an object with
deployment strategy δ〈false, false, true〉).

30

4.2 Analysis of the Problem
The requirements of the distributed deployment scenarios of Sec-

tion 3 suggest that, in addition to specifying a deployment strategy
for the dynamic deployment of an aspect, one needs to be able to
specify the following properties related to distribution:

• Locality of aspect propagation: firstly, when an aspect is
propagated along the call stack [Case 1], should it be prop-
agated when a remote call is performed? secondly, when an
aspect is attached to a procedural value (function, object) that
is passed by copy to a remote host [Case 3], should it remain
attached to the copy of that value?

• Locality of aspect activation: whenever an aspect is dynam-
ically deployed and propagated to various hosts [Case 2], on
what host should it be active?

• User-defined notions of locality: it should be possible to ex-
press locality of propagation and activation of a dynamically-
deployed aspect based on any criteria related to the proper-
ties of the considered hosts, in order to go beyond the local-
remote-global trichotomy [Cases 1 & 3].

4.3 Distributed Deployment Strategies
How shall we add the above-mentioned properties to plain de-

ployment strategies? The basic idea is to define distributed deploy-
ment strategies as transformers over plain deployment strategies:
an application t(δ) of a strategy transformer t to a (non-distributed)
deployment strategy δ augments the latter by a specification of
distributed propagation and/or activation. In this way, distributed
strategies permit to abstract over the two propagation dimensions
(c for call stack and d for delayed evaluation) and provide a single
distributed propagation mechanism.

The previous analysis directly suggests the introduction of the
following six simple distributed deployment strategies:

1. propagate-global: always propagate.

2. propagate-local: never propagate to other hosts.

3. propagate-remote: only propagate in remote calls.

4. active-global: always active.

5. active-local: never active in other hosts.

6. active-remote: active only in remote hosts.

By default, we consider that an aspect propagates and is active on
all hosts (i.e. 1 and 4 are the default). The programmer only needs
to override this default.

The simple distributed deployment strategies can in turn be de-
fined in terms of two general distributed strategies propagate-if
and active-if that are parametrized by a host predicate hp. Such
a predicate defines a subset of all hosts based on a host representa-
tion, thereby allowing for user-defined notions of locality:

• propagate-if (hp): propagate to hosts matched by hp.

• active-if (hp): active on hosts matched by hp.

4.4 Expressing the Examples
Syntax. When illustrating our model with a Java-like language, we
use the following variation on the CaesarJ deploy syntax:

deploy ::= deploy[ds](asp){ expr }
deploy-on ::= deploy-on[ds](asp ,expr)

As in CaesarJ, asp is simply an object that may contain pointcuts
and advices. These pointcuts (and associated advices) are only ac-
tivated when the instance is deployed. Deploying an object that has
no pointcuts and advices has no effect.

Since distributed deployment strategies are functions that take
other strategies as parameters, we assume strategies to be first-
class values in the language. We introduce a bracketed syntax
<...> to construct deployment strategies as values. For instance,
dynamic = <true, false, true> defines the dynamically-
scoped deployment strategy found in both CaesarJ and As-
pectScheme (call stack propagation only, no filter, see 4.1).

Case 1. The billing aspect is deployed over a dynamic extent,
bound by a condition on the receiver type in order to avoid propa-
gating beyond the DBAccess facade. This bounded dynamic scope
is expressed by a plain deployment strategy as:

notBeyondDB = <!target(DBAccess), false, true>;

Here, target is similar to the AspectJtarget pointcut designa-
tor, selecting join points based on the type of the target object.
If we were to deploy the aspect on all hosts, we could use the
propagate-global strategy:

deploy[propagate-global(notBeyondDB)](billing){...}

Note that this propagate-global specification is optional be-
cause it corresponds to the chosen default. In any case, the scenario
stipulates that the aspect should only propagate in hosts that belong
to the TravelGroup. This is done as follows:

deploy[propagate-if(inTravelGroup)(notBeyondDB)]
(billing){...}

where inTravelGroup is the appropriate host predicate.

Case 2. In this case, the profiling aspect should be propagated
globally (the default), but only active locally. This corresponds
to active-local:

deploy-on[active-local(dynamic)](prof, client);

where dynamic refers to dynamically-scoped deployment like in
AspectScheme and CaesarJ, as defined above.

Case 3. In this case, without considering distribution, the deploy-
ment strategy is a refinement of statically-scoped deployment a la
AspectScheme, where the aspect is captured in all objects created
by the factory that are of type Traveler. With respect to distribu-
tion, the protection aspect should only be active in objects accessed
on remote hosts. As a first step, let us assume that this is on any
remote host:

inTravelers = <false, target(Traveler), true>;
deploy-on[active-remote(inTravelers)](priv, fact);

Note that we use deploy-on to deploy the aspect in the factory ob-
ject. Actually, the scenario stipulates that the aspect is only active
in hosts that are not part of TravelGroup:

deploy-on[active-if(not(inTravelGroup))(inTravelers)]
(priv, fact);

To summarize, all the examples can be expressed by augmenting
the plain deployment strategies with the ability to propagate and
activate aspects depending on the host and rely on typical deploy
constructs to apply these strategies. The remainder of this paper de-
tails the semantics of our proposal, using a progressively-extended
Scheme interpreter.

31

(define (eval exp E)
(cond
((lit? exp) (lit-value exp))
((var? exp) (env-lookup (var-name exp) E))
((set? exp) (env-set! (set-name exp)

(eval (set-nval-exp exp) E) E))
((lambda? exp) (make-closure (lambda-params exp)

(lambda-body exp) E))
((app? exp) (let ((cl (eval (app-fun exp) E))

(args (eval-args (app-args exp) E)))
(eval (closure-body cl)

(extend-env (closure-params cl)
args
(closure-env cl)))))

...))

Figure 3: Interpretation of a higher-order procedural lan-
guage.

5. A MODEL OF DISTRIBUTED ASPECTS
This section gradually introduces a model of distributed AOP

that covers the relevant parts of the current state of the art in dis-
tributed aspect languages. We start by introducing a small Scheme-
like higher-order procedural language, add distribution to it, then
aspects, and finally add some typical distributed aspect support.
This model is further extended in Section 6 to fully support dis-
tributed deployment strategies as sketched in Section 4.

5.1 Core base language
We start with a higher-order procedural language with literals

(numbers, strings, booleans), variables with mutation and first-class
functions with call-by-value. In addition, the language supports a
set of typical primitives absorbed from Scheme itself. The only
data structure supported are cons cells, and by extension, lists (all
introduced as primitives as well).

We deliberately do not include objects in the model, both for
space reasons and because our descriptions can be transposed to ob-
jects fairly directly. The essence of this transposition can be found
in the original work on deployment strategies, in which Tanter pro-
vides definitional interpreters and semantics for aspect languages
for both functional and object-oriented base languages [16].

Interpretation. We give the operational semantics of our language
using definitional interpreters4 written in environment-passing
style [7]: the main function, eval, evaluates an expression follow-
ing a simple case-based test on its type. An expression is a parsed
abstract syntax tree, which can be tested with predicates like lit?,
and accessed with accessors such as lit-value.

Figure 3 describes the interpreter for the base language. Ac-
cessing and setting a variable is done by respectively looking up in
and mutating the current lexical environment. Defining a function
creates a closure that captures its lexical environment. Applying a
function evaluates the body of the closure in its definition-time en-
vironment extended with new bindings for the formal parameters.

5.2 Adding distribution
We now extend the language with support for distribution. We

introduce a means to export functions so that they can be referenced
and applied from a remote host, via a function stub. Like in stan-
dard remote procedure call and remote method invocation, remote
function application is synchronous.

4The executable Scheme interpreters, along with examples, are on-
line: http://pleiad.dcc.uchile.cl/research/scope

(define (eval exp E)
(cond ...

((app? exp)
(let ((f (eval (app-fun exp) E))

(args (eval-args (app-args exp) E)))
(eval-app f args))))

...))

(define (eval-app f args)
(if (fun-stub? f)

(remote-exec f args)
(eval-exec f args)))

(define (eval-exec f args)
(eval (closure-body f)

(extend-env (closure-params cl)
args
(closure-env cl))))

(define (remote-exec f args)
...serialize host, function id & arguments...
...send to target host (triggers receive-call)
...wait for result...
...deserialize result...)

(define (receive-call)
...deserialize client host, function id & arguments...

(let ((f (lookup-exported id)))
(eval-exec f args)
...serialize result...
...send back to caller...))

Figure 4: Interpretation of a higher-order procedural language
with distribution.

A host runs a local registry of the functions it exports. The pro-
grammer can export a function on the current host using the export
primitive, which returns a stub to that function. Passing this stub as
a parameter of remote calls permits other hosts to apply the func-
tion remotely. Additionally, one can export a function giving it a
name using export-as. A remote host can then do a lookup of
that name on that host in order to obtain a stub to that function.

A stub is a structure that contains the name of the function, the
identifier of the host that provides the function, as well as any inter-
esting metadata on the function (such as expected number of argu-
ments or any other type information). Parameter passing is done by
copy, but of course, passing a stub by copy is equivalent to passing
an exported function by (remote) reference.

Passing a closure (not a stub) by copy implies also copying
the transitive closure of its captured environment. In order to
avoid copying the full local environment of each host, each host
has a global root environment that is not captured by copy and
hence never passed over the network. Examples of values that re-
side in the root environment are typical library and utility functions.

To illustrate, consider the code below run on the booking server,
which exports a reservation service under the name “reserve”:

(export-as "reserve" (lambda (tinfo specs) ...))

On a client, the service can then be looked up and applied:

(let ((reserve (lookup "booking server" "reserve")))
(reserve))

Interpretation. Figure 4 sketches the evolution of the interpreter
to support distribution. The interpretation of a function applica-
tion now needs to discriminate between local and remote calls
(eval-app). Local calls are interpreted as before. Remote calls

32

(define (eval exp E jp)
(cond ...

((app? exp)
(let* ((f (eval (app-fun exp) E jp))

(args (eval-args (app-args exp) E jp)))
(njp (make-jp f args jp)))

(weave njp)
(eval-app f args njp))

...))

Figure 5: Interpretation of a higher-order procedural language
with aspects (call join points, before advice).

imply extracting information from the stub, serializing it and send-
ing it to the target host (remote-exec). Since remote invocation
is synchronous, the interpreter then waits for the result, and dese-
rializes it when available. On the server side, when a call to an
exported function is received (receive-call), the actual closure
is looked up based on its exported name, and evaluated locally. The
result is then serialized and sent back to the caller.

5.3 Aspects
We start with a model of join points, pointcuts and advices which

is similar to that of AspectScheme (a formal semantics of which
can be found in [6]). This model will be extended in Section 6 to
support distributed deployment strategies.

The only join points considered for now are function applica-
tions. A join point can be either top-level or nested within other
active function applications.

A join point in context is an abstraction of the call stack: it is
represented by a recursive structure, whose head is the current join
point (the function to apply), and whose tail is the context (the
pending active function applications).

An important characteristic of the model is that both pointcuts
and advices are first-class values. A pointcut is a predicate over
join points in context, i.e. it is a function of type5:

PC = JoinPoint→ Bool

A pointcut designator, such as call and cflow, is a function
that returns a pointcut. Figure 6 shows how the typical pointcut
designators and their composition are defined in the language. For
instance, if reserve is a function in scope, then (call reserve)
returns a pointcut that matches application of that function.

Similar to our previous work on aspect scoping [16], for the sake
of simplicity, and without loss of generality, we restrict ourselves to
before advice. The focus of this work is on scoping, that is, how to
delimit the set of join points that an aspect can potentially match;
the kinds of effects at these join points is an orthogonal concern.
Therefore, in contrast with the original AspectScheme description
where advices are modeled as function transformers, we simply
model advices as functions of type:

ADV = JoinPoint→ Unit

an advice performs its effect before the standard interpretation pro-
ceeds, and its return value is ignored. We do not account for context
exposure beyond the fact that an advice receives the matched join
point in context as parameter. Finally, an aspect a ∈ ASP is sim-
ply represented as a pair of a pointcut and an advice.
5Formalizing pointcuts as functions of type JoinPoint → Bool
does not take into account the fact that generally pointcuts –and
in this case, Scheme functions– can access mutable state that we
ought to model explicitly. However this would only obscure the
main points we are focusing on.

(define call (lambda (f)
(lambda (jp) (eq? (jp-fun jp) f)))))

(define cflow (lambda (pc)
(lambda (jp) (or (pc jp)

((cflowbelow pc) jp)))))

(define cflowbelow (lambda (pc)
(lambda (jp) (and (has-parent? jp)

((cflow pc) (jp-parent jp))))))

(define && (lambda (pc1 pc2)
(lambda (jp) (and (pc1 jp) (pc2 jp)))))

Figure 6: Some typical pointcut designators.

Interpretation. To model join points in context, the interpreter
takes as parameter the join point at the enclosing function appli-
cation. When a function is to be applied, the interpreter creates a
new join point representing that application, triggers weaving, and
then proceeds with executing the function application, with the new
join point. This is outlined in Figure 5 (to be compared to the initial
definition of eval in Figure 3).

A join point is a structure that aggregates the applied function,
the arguments, and its parent join point (#f at the root):

(define-struct jp (fun args parent))

At this stage, we simply consider a global aspect environment,
i.e. a global variable in the interpreter. Weaving simply iterates over
all the aspects in this global environment, applying their pointcuts
to the new join point, and applying the associated advice whenever
a pointcut matches6.

5.4 Distributed Aspects
Deployment. Current distributed aspect languages and frameworks
provide different mechanisms to deploy aspects on hosts in a net-
work. Except for CaesarJ’s distributed control flow deployment,
these specifications are all static, and imply that aspects have global
scope on each host.

As a first step, we introduce a mechanism to deploy an aspect
on a given (set of) host(s). Like existing proposals, this mechanism
gives aspect a global scope on each host; however, in our model
aspects are not statically-specified entities. Therefore, our per-host
deployment mechanism is dynamic. Executing:

(let ((pc (call reserve))
(adv (lambda (jp) ...))

(deploy-global-on-host "host1" (pc . adv))))

deploys an aspect that operates on calls to reserve on host host1.
The implementation adds the aspect to the global aspect environ-
ment of that host. This global deployment scheme is refined in the
next section when introducing distributed deployment strategies.

Remote pointcut and advice evaluation. When aspects are passed
over the network, for instance when they are deployed to a remote
host, like above, they are treated as plain values, passed by copy.
6In AspectScheme, the execution of pointcuts and advice triggers
further join points, so a dedicated primitive is provided to be able to
define pointcuts and avoid these applications to trigger join points.
In our case, for simplicity, we execute pointcuts and advices in
“sandboxes” where no aspect can match, thereby avoiding other
aspect reentrancy issues. For a general discussion about reentrancy
issues with aspects, in particular with first-class pointcuts and ad-
vices, we refer the reader to [17].

33

But since pointcuts and advices are first-class functions, they can
also be remote functions (i.e. stubs): in that case, they are passed
by reference over the network and are always executed on their
exporting host.

This difference matters when one considers that these functions
can be stateful: they encapsulate their lexical environment, which
can be mutated. For instance, in the deployment example above,
suppose that adv is a stateful function, like a counter. adv is being
passed by copy, so on host1, adv will have its own local state. On
the contrary, if one would deploy it as:

(deploy-global-on-host "host1" (pc . (export adv)))

the advice function is passed by remote reference, since it is first ex-
ported using export. Therefore its state does not reside on host1
but on the host on which the deployment is performed.

Join points and distribution. Because a join point in context keeps
a parent link to its predecessor join point, it is an abstraction of the
call stack (Section 5.3). The interpreter always passes the current
join point around, including upon remote calls. Therefore, the stack
abstraction is maintained upon distribution, resulting in a represen-
tation of a distributed call stack.

Performance-wise, passing this stack abstraction by copy upon
each remote call is not appropriate. Better solutions can be devised.
For instance, the join points can be stored locally by default and
lazily copied, with the exception of a few join points at the top of
the stack. However, as this has no influence on the semantics of
aspect deployment and execution, we will stick here to the simple
model presented in the previous paragraph.

Distribution-related pointcuts. With respect to expressiveness of
the aspect language, it has been repeatedly shown that being able
to discriminate join points based on their host of occurrence is valu-
able [3, 13, 18], e.g. to express pointcuts that match only on certain
hosts. To this end, we extend the representation of a join point to
embed its host of occurrence. We also go a step further by includ-
ing the target host of a call. The target host of a call join point is
only specified if the call is a remote call. This provides the ability
to discriminate join points not only based on where they occur, but
also if they are remote calls or not, and to which host they are di-
rected. In order to be able to reason about hosts, we represent hosts
by a set of key-value properties, as in ReflexD [18]. This includes
the possibility to define host groups like in AWED [3].

Figure 7 presents a number of pointcuts and pointcut designa-
tors that take advantage of these extensions. For instance, host
matches a join point only if its host matches the given set of prop-
erties. remote-call? discriminates remote calls from local ones.
We can also define local-only versions of the control flow pointcut
designators, so as to ensure that pointcut matching does not involve
inspecting the remote stack.

5.5 Extending the Execution Model
While the model of distributed aspects presented up to here is

fairly complete, we extend it further with two refinements. These
refinements –namely, the separation of call and execution, and of
definition and copy of functions– are not specific to distribution.
However, they are natural in a distributed setting. In addition,
when combined with the basic distributed AOP features we have
already presented, they make it possible to define distributed de-
ployment strategies as simple transformers of plain strategies, as
will be shown in Section 6.

Call and execution. The first refinement is to split “function ap-
plication” into function call and execution. Most non-distributed

(define host
(lambda (props)

(lambda (jp) (host-match? props (jp-host jp)))))

(define local-cflow
(lambda (pc)

(lambda (jp) (or (pc jp)
((local-cflowbelow pc) jp)))))

(define local-cflowbelow
(lambda (pc)

(lambda (jp)
(and (has-parent? jp)

(same-host? jp (jp-parent jp))
((local-cflow pc) (jp-parent jp))))))

(define remote?
(lambda (jp) (not (eq? (jp-target-host jp) #f)))

(define remote-call?
(lambda (jp) (and (call? jp) (remote? jp))))

(define remote-copy?
(lambda (jp) (and (copy? jp) (remote? jp))))

Figure 7: Distribution-related pointcut designators.

aspect languages actually make this distinction. In a distributed
setting, it makes even more sense because both join points poten-
tially happen on different hosts: e.g. the call on the client host, and
the execution on the server. So, we introduce a new kind of join
point to denote function execution. Such a join point is created on
the host that evaluates the actual body of a function.

Since up to now we had only one kind of join points, we need to
refine the definition of join points with an extra kind attribute. To
sum up, a join point is now defined as:

(define-struct jp (kind fun args parent host target-host))

where (up to now) kind can be either call or exec.

Creation and copy. The second refinement is to consider that a
function can not only be created when defined in program text, but
also whenever a function is copied7. In a distributed setting, this
is important because arguments to remote functions are passed by
copy. We introduce two new kinds of join points, new and copy, to
denote “fresh” function creation and function copy, respectively. A
copy join point holds the original function in its fun attribute.

Just introducing a copy operation in the execution model enables
us to talk about remote parameter passing uniformly, in the same
way as we are able to discriminate remote calls. Figure 7 shows the
definition of the remote-copy? pointcut.

6. DYNAMIC ASPECT DEPLOYMENT
Section 5 has introduced a simple model of distributed aspects,

which covers a good part of the features of current distributed as-
pect languages/frameworks like remote pointcuts [13], AWED [3]
and ReflexD [18]. The model includes four kinds of join points
(call, execution, new, copy), potential remote evaluation of both
pointcuts and advices, property-based representation of hosts, and
embedding of current and target hosts in join points to support
pointcuts that can discriminate local and remote calls, as well as
the host of occurrence.

The deployment model so far supports dynamic per-host deploy-
ment of aspects with host-global scope. As illustrated in Section 2
7Note that introducing copying into the model brings us even closer
to objects, specifically regarding cloning and instantiation.

34

A = {〈a, δ〈c, d, f〉〉 | a ∈ ASP, c, d, f ∈ PC}
Adef = {〈a, δ〈c, d, f〉〉 ∈ A | d(njp)}
Aapp = {〈a, δ〈c, d, f〉〉 ∈ A | c(njp)} ∪ closure.A

Aweave = {〈a, δ〈c, d, f〉〉 ∈ A | f(njp)}

Figure 8: Deployment strategies semantics in a nutshell

and 3, explicit per-host deployment of aspects with host-global
scope does not suffice (even if being able to do it dynamically is
already a gain over static approaches). In this section, we refine
this model to support expressive scoping of dynamically-deployed
aspects in a distributed context.

We quickly review the semantics of plain deployment strategies
as presented by Tanter [16]. Then, we show how to extend these se-
mantics to take into account the extended execution model with the
join points introduced in Section 5.5, and describe an definitional
interpreter of our proposal. Finally, we define distributed deploy-
ment strategies as transformers of deployment strategies, express-
ing the solutions to the examples given in Section 4.4.

6.1 Background: Deployment Strategies
Aspect deployment strategies have initially been proposed in a

non-distributed context [16], their semantics being defined opera-
tionally using Scheme interpreters in the line of the Aspect Sand-
Box project [10, 11, 19].

Compared to the environment-passing style interpreters we have
presented until now, an interpreter of dynamic deployment strate-
gies evaluates an expression within an aspect environment that is
passed around between evaluation steps8.

The aspect environment contains the currently-deployed aspects
whose pointcuts must be evaluated. An aspect is initially inserted
into the environment when it is deployed, with its strategy. The
expression deploy(δ〈c, d, f〉, a, e) inserts 〈a, δ〈c, d, f〉〉 in the cur-
rent aspect environment A before proceeding with the evaluation
of the reducible expression e. To support statically-scoped aspects,
a closure also captures an aspect environment (closure.A). It
is possible to augment this captured aspect environment using
deploy-on(δ〈c, d, f〉, a, v), which inserts 〈a, δ〈c, d, f〉〉 in the
aspect environment of the procedural value v9.

Figure 8 recalls the semantics of deployment strategies in a non-
distributed context. The aspect environment A is a set of pairs
〈a, δ〈c, d, f〉〉, where a is an aspect and c, d, and f are the compo-
nents of the deployment strategy δ.

When a function is defined, the corresponding closure captures
only those aspects whose propagation function for delayed evalua-
tion d returns true . This forms the set Adef .

When a function is applied, its body is evaluated in an aspect
environment comprised of the aspects in the current aspect envi-
ronment whose propagation function for call stack c returns true ,
in addition to the aspects in the aspect environment of the closure.
This forms the set Aapp.

The set of aspects Aweave that should be woven at a given join
point is obtained by selecting the aspects of the current aspect en-
vironment whose join point filter f accepts the current join point.

8The Aspect SandBox interpreter of Masuhara et al. [11] and the
formal model of Wand et al. [20] use a global aspect environment:
this is insufficient for modeling expressive aspect scoping [6, 16].
9The deploy expression can actually be seen as syntactic sugar for
deploy-on, which transforms the expression into a value by nesting
it under a lambda: deploy(δ, a, e)→ deploy-on(δ, a, λ().e)

A = {〈a, δ〈c, d, f〉〉 | a ∈ ASP, c, d, f ∈ PC}
Anew = {〈a, δ〈c, d, f〉〉 ∈ A | d(njp)}
Acopy = {〈a, δ〈c, d, f〉〉 ∈ A ∪ original.A | d(njp)}
Acall = {〈a, δ〈c, d, f〉〉 ∈ A | c(njp)}
Aexec = Acall ∪ closure.A
Aweave = {〈a, δ〈c, d, f〉〉 ∈ A | f(njp)}

Figure 9: Revisiting deployment strategies semantics.

6.2 Refining Deployment Strategies
Our analysis of Section 4 has made clear that we need to be able

to express the locality of aspect propagation and activation. We
have found that we can bring this extra expressiveness to deploy-
ment strategies by introducing the two refinements to the execution
model introduced in Section 5.5. It is sufficient to discriminate be-
tween call and execution join points, and add support for copy join
points to the model. The original exposition of deployment strate-
gies [16] however only considers function application join points.
Therefore the semantics of deployment strategies as presented in
Figure 8 needs to be revisited.

First, to account for the separation of call and execution join
points, we update the semantics of deployment strategies to sep-
arate Aapp into two aspect environments: Acall, the set of aspects
that propagate on the call stack, andAexec, the set of aspects to use
during the evaluation of the body of a function:

Acall = {〈a, δ〈c, d, f〉〉 ∈ A | c(njp)}
Aexec = Acall ∪ closure.A

Note that Acall is computed on the caller side, so if an aspect does
not propagate on remote calls, it is not sent over the network.

Second, the logic of delayed evaluation propagation, d, needs to
be updated to take into account function copying. We renameAdef

to Anew and distinguish a new aspect environment, Acopy , which
is the set of aspects that are embedded in a function copy:

Anew = {〈a, δ〈c, d, f〉〉 ∈ A | d(njp)}
Acopy = {〈a, δ〈c, d, f〉〉 ∈ A ∪ original.A | d(njp)}

When a function is copied, aspects captured in the original function
(original.A) may or may not propagate in the copy: the d function
of each aspect deployed in the original function receives the copy
join point and decide whether or not the aspect propagates. The
other part of the definition ofAcopy follows the definition ofAnew:
the copied function is a newly-created function, so aspects in the
current aspect environment A may be captured: the copy join point
is passed to their d propagation function.

Figure 9 summarizes the semantics of deployment strategies with
the two refinements mentioned above. (Aweave is unchanged.)
In the following section we present the corresponding interpreter.
Section 6.4 then shows that armed with these new definitions, com-
bined with the definition of join points augmented for distribution
(with current and target hosts), distributed deployment strategies
can be expressed simply as deployment strategy transformers.

6.3 Interpretation
We now describe the semantics of our updated model of deploy-

ment strategies using an interpreter-based operational definition.
The interpreter of Figure 10 extends the various interpreters pre-
sented in Section 5.

35

(define (eval exp E A jp) ←− 3
(cond ...

((lambda? exp) (new-function (lambda-params exp) (lambda-body exp) E A jp))
((app? exp) (let ((f (eval (app-fun exp) E A jp))

(args (eval-args (app-args exp) E A jp)))
(eval-call f args A jp))))

...))

(define (eval-call f args A jp)
(let ((njp (make-jp ’call f args jp (get-current-host) (target-host f)))) ←− 4

(weave-some A njp) ←− 5
(let ((asps (collect-match-c njp A))) ←− 6

(if (fun-stub? f)
(remote-exec f args asps jp)
(eval-exec f args asps jp)))))

(define (eval-exec cl args A jp)
(let ((njp (make-jp ’exec cl args jp (get-current-host) #f))) ←− 7

(env (extend-env (closure-params cl) args (closure-env cl)))
(asps (union A (closure-aspects cl))) ←− 8

(weave-some A njp) ←− 9
(eval (closure-body f) env asps njp)))

(define (new-function formals body E A jp)
(let* ((njp (make-jp ’new #f formals jp (get-current-host) #f)) ←− 10

(asps (collect-match-d njp A))) ←− 11
(weave-some A njp) ←− 12
(make-closure formals body E asps)))

(define (copy-function orig A jp)
(let* ((njp (make-jp ’copy orig (closure-params orig) jp (get-current-host) (get-target-host))) ←− 13

(asps (union (collect-match-d njp A) (collect-match-d njp (closure-aspects orig))))) ←− 14
(weave-some A njp) ←− 15
(make-closure (closure-params orig) (closure-body) (deep-copy (closure-env orig)) asps)))

(define (weave-some A jp) (weave (collect-match-f A jp) jp)) ←− 16

Figure 10: Interpretation of deployment strategies for a higher-order procedural language, with distribution and extended execution
model.

First of all, note that eval takes as parameter the current aspect
environment, in addition to the lexical environment and the current
join point 3 . When a function is applied (eval-call), first the
corresponding call join point is created 4 . The join point embeds
the current host, as well as the target host (#f if the function is
not a stub). Weaving on the call join point is then triggered 5 :
weave-some uses collect-match-f to obtain Aweave, the set of
all given aspects for which the join point filter f yields true 16 .

Next, all aspects that propagate on the call stack as speci-
fied by their c propagation function (i.e. Acall) are gathered with
collect-match-c 6 . If the function is a stub, the remote call exe-
cution is triggered as explained in Section 5.2, additionally passing
the aspect environment Acall and the new join point as parameters.

When a function is executed (eval-exec), the corresponding
execution join point is created 7 and woven 9 . The set of aspects
that potentially apply during the evaluation of the function body,
Aexec, is computed 8 and evaluation proceeds.

Similarly, when a function is defined (new-function), the cor-
responding new join point is created 10 and woven 12 . Since as-
pect weaving occurs before the actual function is created, there is
no fun attribute for such a join point (#f), and the formal parame-
ters are given as the args attribute. The aspect environment of the
closure,Anew, is obtained using collect-match-d, passing it the
newly-created join point njp 11 .

When a function is copied (copy-function), a copy join point
is created 13 . If the copy occurs during the remote parameter pass-
ing process, the join point embeds the target host information. This
information is obtained using a dynamically-scoped variable acces-

sor get-target-host, used to avoid cluttering all functions with
an extra parameter. The join point also embeds the original func-
tion. Once the join point is created, the interpreter triggers weav-
ing 15 , and creates the closure copy. The closure captures the set
of aspects Acopy , obtained by using collect-match-d with the
copy join point on both the current aspect environment, and the
aspect environment of the original closure 14 .

6.4 Distributed Deployment Strategies
We now show how distributed deployment strategies are ex-

pressed as transformers of plain deployment strategies.
Section 4 identified three requirements for distributed deploy-

ment strategies: (a) locality of aspect propagation, (b) locality of
aspect activation, and (c) user-defined notions of locality. Deploy-
ment strategies specify propagation via the call stack c and delayed
evaluation d propagation functions; and activation via the join point
filter f . By default, an aspect propagates on remote hosts and is
active on all hosts, unless its deployment strategy expresses some
distribution-related propagation and activation restrictions.

Distributed deployment strategies are transformers that take a
deployment strategy and add restrictions to its components. Re-
call that these components are pointcuts, so the transformations in-
volved are pointcut compositions: combining an existing pointcut
with a pointcut that specifies distribution-related conditions.

User-defined notions of locality rely on the possibility to go be-
yond the local-remote-global trichotomy. The solution to this is
to support host properties and arbitrary host predicates (functions
from host properties to booleans), as introduced in Section 5.4.

36

Locality of propagation. Locality of aspect propagation can be ob-
tained by placing restrictions on c and d such that we can control
when an aspect is propagated to another host: on a remote call,
or when embedded in a function passed by copy. As shown on
Figure 7, we are able to provide pointcut descriptors that capture
remote calls and copies. So we can express locality of aspect prop-
agation by adding conditions based on the target host of the call
and copy join points that are used when evaluating the correspond-
ing propagation functions.

More formally, let restrict-target be the following higher-
order pointcut designator:

(define restrict-target
(lambda (hp) (lambda (pc) (lambda (jp)

(and (hp (target-host jp)) (pc jp))))))

Given a host predicate hp, and a pointcut pc, restrict-target
returns a new pointcut, element of PC, which imposes the restric-
tions of the host predicate hp on the target host of the given join
point jp, in addition to the selection expressed by pc.

We can now define the general distributed deployment strategy
for propagation, propagate-if (Section 4), as follows:

(define propagate-if
(lambda (hp) (lambda (<c, d, f>)

<((restrict-target hp) c),
((restrict-target hp) d), f>)))

(For the sake of consiseness, we reuse the bracketed syntax of Sec-
tion 4.4 to do pattern matching on deployment strategies as well as
to build these strategies.) Given a host predicate, propagate-if
returns a strategy transformer that, given a deployment strategy
δ〈c, d, f〉, returns a new strategy where the propagation compo-
nents c and d are extended with the host restrictions. The join point
filter f is untouched.

Locality of activation. Similarly, locality of aspect activation can
be obtained by restricting the f component of a deployment strat-
egy. In this case, the conditions are on the current host on which
the aspect is residing.

Let restrict-current be the following higher-order pointcut
designator:

(define restrict-current
(lambda (hp) (lambda (pc) (lambda (jp)

(and (hp (current-host jp)) (pc jp))))))

Given a host predicate hp, and a pointcut pc, restrict-current
returns a new pointcut, element of PC, which imposes the restric-
tions of the host predicate hp on the current host of the given join
point jp, in addition to the selection expressed by pc.

We can now define the general distributed deployment strategy
for activation, active-if (Section 4), as follows:

(define active-if
(lambda (hp) (lambda (<c, d, f>)

<c, d, ((restrict-current hp) f)>)))

Given a host predicate, active-if returns a strategy transformer
that, given a deployment strategy δ〈c, d, f〉, returns a new strategy
in which the join point filter f is complemented with the host re-
strictions. The propagation components c and d are unchanged.

Typical deployment strategies. The six typical deployment strate-
gies introduced in Section 4.3 are easily expressed using the general
predicate-based strategies. For instance:

(define propagate-local (propagate-if is-current)
(define active-remote (active-if is-remote)

with the following auxiliary functions:

(define is-current (eqc? current-host))
(define is-remote (lambda (h) (not (is-current h))))

where eqc? is the curried version of eq?, and current-host is a
variable defined on each host. Therefore, is-current is a function
that compares a given host to its host of origin.

Finer-grained strategies. While distributed deployment strategies
are assimilating the two propagation dimensions of deployment
strategies into a single one, it remains possible to place different
distributed-related restrictions on the individual propagation com-
ponents. This makes it possible to express, for instance, that an
aspect should always propagate on the call stack whatever the host,
while it should only propagate in selected hosts when captured in
the environment of a procedural value passed by remote copy.

6.5 Discussion
This work introduces a general notion of aspect scoping for dis-

tributed programming. Our model includes first-class pointcuts and
advices, as well as their potentially remote execution, and exposes
four kinds of join points: call and execution, creation, and copy.
The latter is rather unusual in mainstream aspect languages, but is
essential in order to control by-copy remote parameter passing.

Intentionally, we do not address other crucial issues for dis-
tributed aspects, in particular, different underlying communication
models. We consider only a simple, purely synchronous model
for remote communication, with no particular regard to concur-
rency. While this corresponds to a wide range of distributed appli-
cations, the treatment of concurrency deserves more attention. For
instance, in very dynamic distributed contexts like Ambient Intelli-
gence — where dynamic deployment is a highly valuable feature —
languages typically adopt an asynchronous communication model,
e.g. (a variant of) the actor model. Scoping mechanisms need to be
refined for properly dealing with these specific assumptions.

This work provides a very expressive model for the propaga-
tion of aspects and remote behavior resulting from their activation.
This expression power should be counterbalanced by means for the
analysis and enforcement of propagation and activation properties,
for instance to control aspectual effects and thereby preventing pro-
gramming errors or enforcing security properties of the resulting
distributed applications.

Finally, our model stays at a level of abstraction where function
stubs are transparent at the language level. It is possible to devise
a lower-level model where stubs are visible and hence deploying
aspects on stubs become possible. This may enable the expression,
using aspects, of more advanced distribution scenarios like smart
proxies, where a stub memoizes results of remote invocations.

7. CONCLUSION
Expressive scoping of dynamically-deployed aspects enhances

the potential benefits of aspects in terms of applicability, reuse,
and performance by allowing the programmer to defer deployment-
related decisions to run-time. Proper aspect scoping is even more
crucial in distributed systems so as to avoid inconsistencies due to
the decentralized and dynamic nature of these systems. Current
aspect languages for distribution however have only very limited
support for scoped or dynamic deployment, if any.

In this paper we have discussed the limitations of existing aspect
languages in this regard and have provided a number of scenarios
that motivate the need for expressive scoping of distributed aspects.
To achieve this, we have extended previous work on deployment
strategies [16] to deal with the distribution dimension of scoping.

37

In the line of previous research, as well as the Aspect SandBox
project [10, 11, 19], we have given the operational semantics of our
proposal as a concise Scheme interpreter.

Distributed deployment strategies provide precise control over
the two locality dimensions of aspects in distributed systems: prop-
agation and activation. To achieve this, previous work on deploy-
ment strategies is augmented with an extended join point model
that, in particular, exposes information about remote calls and
copies, as well as about hosts. We then express distributed de-
ployment strategies as transformers of plain deployment strategies.
Because deployment strategies are specified dynamically, outside
of aspect definitions, aspects can be reused in both non-distributed
and different distributed settings.

As a result the solution space for scoping of dynamic deployment
of distributed aspects has been explored. Support for such scoping
will greatly aid in developing distributed systems using aspects,
enabling better reuse of aspects as well as permitting the evolution
of such systems. This is especially relevant as this domain is well-
known for being particularly subject to crosscutting concerns.

Acknowledgments. We are grateful to the anonymous reviewers
for their comments.

8. REFERENCES
[1] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus

Ostermann. An overview of CaesarJ. In Transactions on
Aspect-Oriented Software Development, volume 3880 of
Lecture Notes in Computer Science, pages 135–173.
Springer-Verlag, February 2006.

[2] Luis Daniel Benavides Navarro, Rémi Douence, and Mario
Südholt. Debugging and testing middleware with
aspect-based control-flow and causal patterns. In In
Proceedings of the 9th ACM/IFIP/USENIX International
Middleware Conference, Leuven, Belgium, December 2008.
Springer-Verlag.

[3] Luis Daniel Benavides Navarro, Mario Südholt, Wim
Vanderperren, Bruno De Fraine, and Davy Suvée. Explicitly
distributed AOP using AWED. In Proceedings of the 5th
ACM International Conference on Aspect-Oriented Software
Development (AOSD 2006), pages 51–62, Bonn, Germany,
March 2006. ACM Press.

[4] Lodewijk Bergmans and Mehmet Akşit. Composing
crosscutting concerns using composition filters.
Communications of the ACM, 44(10):51–57, October 2001.

[5] Bruno De Fraine and Mathieu Braem. Requirements for
reusable aspect deployment. In Markus Lumpe and Wim
Vanderperren, editors, Proceedings of the 6th International
Symposium on Software Composition (SC 2007), number
4829 in Lecture Notes in Computer Science, Braga, Portugal,
March 2007. Springer-Verlag.

[6] Christopher Dutchyn, David B. Tucker, and Shriram
Krishnamurthi. Semantics and scoping of aspects in
higher-order languages. Science of Computer Programming,
63(3):207–239, December 2006.

[7] Daniel P. Friedman, Mitchell Wand, and Christopher T.
Haynes. Essentials of Programming Languages (2nd ed.).
The MIT Press, 2001.

[8] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William Griswold. An overview of
AspectJ. In Jorgen L. Knudsen, editor, Proceedings of the
15th European Conference on Object-Oriented
Programming (ECOOP 2001), number 2072 in Lecture

Notes in Computer Science, pages 327–353, Budapest,
Hungary, June 2001. Springer-Verlag.

[9] Bert Lagaisse and Wouter Joosen. True and transparent
distributed composition of aspect-components. In Maarten
van Steen and Michi Henning, editors, Proceedings of the
7th ACM/IFIP/USENIX International Middleware
Conference (Middleware 2006), volume 4290 of Lecture
Notes in Computer Science, pages 42–61, Melbourne,
Australia, November 2006. Springer-Verlag.

[10] Hidehiko Masuhara and Gregor Kiczales. Modeling
crosscutting in aspect-oriented mechanisms. In Luca
Cardelli, editor, Proceedings of the 17th European
Conference on Object-Oriented Programming (ECOOP
2003), number 2743 in Lecture Notes in Computer Science,
pages 2–28, Darmstadt, Germany, July 2003.

[11] Hidehiko Masuhara, Gregor Kiczales, and Christopher
Dutchyn. A compilation and optimization model for
aspect-oriented programs. In G. Hedin, editor, Proceedings
of Compiler Construction (CC2003), volume 2622 of
Lecture Notes in Computer Science, pages 46–60.
Springer-Verlag, 2003.

[12] Mira Mezini and Klaus Ostermann. Object creation aspects
with flexible aspect deployment. Technical report,
Technische Universität Darmstadt, 2003.

[13] Muga Nishizawa, Shigeru Chiba, and Michiaki Tatsubori.
Remote pointcut – a language construct for distributed AOP.
In Karl Lieberherr, editor, Proceedings of the 3rd ACM
International Conference on Aspect-Oriented Software
Development (AOSD 2004), pages 7–15, Lancaster, UK,
March 2004. ACM Press.

[14] Hridesh Rajan and Kevin Sullivan. Eos: Instance-level
aspects for integrated system design. In Proceedings of
ESEC/FSE 2003, pages 297–306, Helsinki, Finland,
September 2003.

[15] SUN Microsystems. Remote Method Invocation, 1998.
[16] Éric Tanter. Expressive scoping of dynamically-deployed

aspects. In Proceedings of the 7th ACM International
Conference on Aspect-Oriented Software Development
(AOSD 2008), pages 168–179, Brussels, Belgium, April
2008. ACM Press.

[17] Éric Tanter. Controlling aspect reentrancy. Journal of
Universal Computer Science, 2009. Best Paper Award of the
Brazilian Symposium on Programming Languages (SBLP
2008).

[18] Éric Tanter and Rodolfo Toledo. A versatile kernel for
distributed AOP. In Proceedings of the IFIP International
Conference on Distributed Applications and Interoperable
Systems (DAIS 2006), volume 4025 of Lecture Notes in
Computer Science, pages 316–331, Bologna, Italy, June
2006. Springer-Verlag. Best Paper Award of the three
DisCoTec 2006 Conferences.

[19] Naoyasu Ubayashi, Genki Moriyama, Hidehiko Masuhara,
and Tetsuo Tamai. A parameterized interpreter for modeling
different AOP mechanisms. In Proceedings of the 20th
IEEE/ACM International Conference on Automated Software
Engineering, pages 194–203, Long Beach, CA, USA, 2005.
ACM Press.

[20] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn.
A semantics for advice and dynamic join points in
aspect-oriented programming. ACM Transactions on
Programming Languages and Systems, 26(5):890–910,
September 2004.

38

	Introduction
	The case for dynamic deployment of distributed aspects
	Issues with Static Deployment
	Dynamic Deployment of Aspects
	Dynamic Distributed Aspect Deployment

	Expressive Scoping Scenarios
	Case 1: Controlling propagation
	Case 2: Controlling activation
	Case 3: Controlling per-object activation

	Scoping of Distributed Aspects
	Plain Deployment Strategies
	Analysis of the Problem
	Distributed Deployment Strategies
	Expressing the Examples

	A Model of Distributed Aspects
	Core base language
	Adding distribution
	Aspects
	Distributed Aspects
	Extending the Execution Model

	Dynamic Aspect Deployment
	Background: Deployment Strategies
	Refining Deployment Strategies
	Interpretation
	Distributed Deployment Strategies
	Discussion

	Conclusion
	References

