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Abstract—In automated compiler testing, the focus typically
lies in uncovering bugs caused by optimisations performed by
the compiler. However, there is a class of compilers where
little to no optimisations are performed: those for migration
of legacy software. Therefore, it is not clear to what extent
such legacy compilers would benefit from automated compiler
testing. We investigated this in the context of the Raincode
legacy compiler for PL/I, an industrial compiler targeting the
.NET platform. We designed and implemented a framework
for automated PL/I compiler testing through precomputation-
based program generation and ran it on two versions of the
Raincode PL/I compiler: an older with known bugs and the
latest release. On the older version, our framework generated
around 127.000 programs and found five bugs, two of which
were previously unknown to us. For the latest compiler release,
after 180 hours of tests and more than 718.000 generated
programs, the framework did not reveal any bugs.

1. Introduction

Compilers generally have a few features that make them
interesting subjects for automated testing approaches: they
are large, complex and yet expected to be correct and de-
pended on by users. The former two mean they are difficult
to test well, and the latter mean that it is of paramount
importance that they are tested well. Prior research into
the domain of automated compiler testing [1] focuses it-
self primarily on testing modern, optimized compilers, with
much of this work targeting optimization phases of various
C compilers [2], [3], [4], [5].

We focus instead on adapting and applying some of
these techniques on a so called legacy compiler [6]. Legacy
compilers differ from modern compilers in two key aspects.
First is the language they cover, and second is the degree
of optimisations. Their goal is not in producing the most
efficient result, but rather making the language available
on a more modern platform than it was originally designed
for. This means covering the entire language syntax, with
behaviour identical to that on the old platform remains the
most important objective. Consequently, no significant effort
is placed in developing optimizations.

While application of automated compiler testing tech-
niques on legacy compilers is a relatively unexplored re-

search area, these compilers can benefit greatly from au-
tomated testing, arguably to an extent even more so than
modern compilers. This comes from the few opportunities
they generally have for manual testing and production test-
ing, due to the small number of domain experts and publicly
available use cases, respectively.

2. Industry problem

Raincode©1 is an independent compiler company, offer-
ing among others PL/I and COBOL legacy compilers for
Microsoft’s .NET framework. Automated compiler test-
ing techniques present an interesting opportunity to expand
their overall testing approach, which currently relies on a
manual testing framework as well as production experience.

Automatically testing compilers is not a new idea. One
effort to test a PL/I compiler [7] is at the time of writing
just over half a century old. However, if the goal is to test not
only if something compiles, but also if it compiles correctly
(i.e. produces the right output), some form of oracle must
be used [8]. Since true oracles that can tell for any given
program what its output should be are not available in
practice, they can be substituted in a couple of ways.

One approach is called Random Differential Testing
(RDT), which comes down to compiling the program using
multiple compilers, and assuming that the majority of the
compilers produce the right result. CSmith [9] is perhaps
the most well known example of this, having uncovered
many bugs in the GCC and LLVM C compilers. However,
RDT requires multiple compilers to be available, and be-
comes more reliable the more compilers are included. This
makes RDT less feasible in an environment where not many
different compilers are available. Another approach, Equiv-
alence Modulo Input (EMI), is based on equivalent program
mutation [2], [3], [10]. In EMI, an existing random program
(sourced using a generator such as CSmith) is mutated so
that its output stays the same under a predetermined input.
Like with RDT, all mutants are compiled and run. If one of
the mutants produces a different output, a bug is uncovered.

In this work we applied the precomputation-based pro-
gram generation [4] and Equivalence Modulo Input [2]
techniques on the Raincode© PL/I compiler. The main

1. http://www.raincode.com



challenge of our work is twofold: First, adapting automated
compiler testing techniques to the PL/I language. Most of
these techniques have been designed for testing C compilers,
with earlier endeavours outside of the C language [11], [12],
[13], [14] having varying levels of success. PL/I is a lan-
guage with a very large spectrum of constructs available. It
contains many features, some of which are unique to the lan-
guage, and therefore lack any easily translatable generation
or mutation strategies. This makes PL/I a good candidate to
test the general applicability of automated compiler testing
techniques in a legacy context. Second, targeting different
kinds of bugs. Automated compiler testing approaches, and
in particular mutative approaches are focused on uncovering
bugs in the optimization phase(s) of a compiler [1]. Legacy
compilers, on the other hand, categorically lack these opti-
mization phases. It is interesting then, to observe how well
these techniques will hold up in this context, for which they
were not originally designed to be employed.

The goal of our research is exploring the adaptation
of automated compiler testing to legacy programming lan-
guages. On a practical level, we design and implement a
framework consisting of a program generator and an equiv-
alence mutator for automated testing of a PL/I compiler.
We define the following research questions:

RQ1 How can we adapt optimization-focused automated
compiler testing techniques to legacy compilers?

RQ2 How can we design a program generator for equiva-
lence mutation testing of a PL/I compiler?

RQ3 How can we design an equivalence mutator for a PL/I
compiler?

We validate and evaluate our framework by running
experiments on two separate versions of the Raincode©
PL/I compiler: an older version of the compiler, with a
set of known bugs, as well as the most current version.

3. Background

3.1. The PL/I Language and Subset/G PL/I

PL/I is a procedural programming language originally
designed for IBM’s S/360 system and accompanying op-
erating system, OS/360. Its main design goal was to create
a programming language that could satisfy the requirements
of all three distinct categories of user groups that were
present at the time: scientific, commercial and special-
purpose. PL/I was designed by committee, a work that
started in October 1963. The first document describing the
language was presented in March 1964 [16].

As Dijkstra mentions, PL/I is of a “frightening size
and complexity” [17], which arguably makes it both hard
to implement as well as to teach [18]. To this end, the
PL/I General Purpose Subset (Subset/G PL/I) [15]
was designed during the 1970s, and released as a standard in
1981. Subset/G PL/I aims to preserve the most useful
properties of PL/I while getting rid of rarely used or
inefficient features, as well as things that were by the 1970s
known as arguably bad language design. Figure 1 shows the
statement types available in Subset/G PL/I.

Figure 1. All statement types available in Subset/G PL/I, from [15]

A complete overview of PL/I or Subset/G PL/I is
out of the scope of this text. Instead we will highlight two
of the language features that are relevant to our discussion.

3.1.1. DECLARE. Variable declarations are done through the
DECLARE keyword (abbreviation: DCL). This is followed by
a name for the variable and any set of attributes. Multiple
variables can be declared using a single declare statement,
by putting them in a comma-separated list, as shown in
Listing 1.

1 / * v a r s A and CH wi th v a l u e s : 4 and d e f a u l t * /
2 DECLARE A BINARY INIT ( 4 ) , CH CHAR;
3 / * v a r B wi th v a l u e : [ 5 , 0 , 0 , 0 ] * /
4 DECLARE B DIMENSION ( 4 ) BINARY INIT ( 5 ) ;
5 / * v a r C wi th v a l u e : [ 5 , 5 , 0 , 0 ] * /
6 DECLARE C DIMENSION ( 4 ) BINARY INIT ( ( 2 ) 5 ) ;
7 / * v a r D wi th v a l u e : [ 5 , 6 , 5 , 6 ] * /
8 DECLARE D DIMENSION ( 4 ) BINARY INIT ( ( 3 ) ( 5 , 6 ) ) ;

Listing 1. Declare statement examples

Three notable attributes of DECLARE are:
type: Arguably the most important attribute is the one that
declares the type of the variable. Apart from the usual types
of binary, character and floats, PL/I also supports fixed-
precision floats and complex numbers.
DIMENSION: An array declaration is performed through
the dimension attribute. This attribute is denoted by the
(optional!) DIMENSION keyword, followed by one or more



bounds enclosed in brackets and separated by a comma.
Bounds consists of at least an integer value upper bound,
optionally preceded by a lower bound followed by a colon.
The default value of lower bound is 1, and it must always
be less than or equal to the upper bound.
INITIAL value (abbreviation: INIT): This attribute allows
the variable to be initialized with a value other than the
default value of its type, e.g., 0 for binary variables. The
value is passed between brackets after the keyword. In case
the variable is an array, multiple values can be passed to the
initial attribute. Singular values or lists of values (enclosed
in brackets, comma-separated) can also be repeated by pref-
acing them with a repetition, a single integer value (higher
than zero) enclosed in brackets. Excess values, if any, are
dropped.

3.1.2. DO. In its most basic form, a do-group groups state-
ments into a block, executing this block exactly one time.
However, its optional elements make it PL/I’s de facto
looping mechanism. These include:
reference variable: Similar to modern looping mechanisms,
there is an option to initialize a loop variable. This is called
the reference variable.
WHILE: This is a loop termination expression evaluated
before every iteration of the loop.
UNTIL: This is a loop termination expression evaluated
after every iteration of the loop
BY: The expression accompanying this keyword is evaluated
once before the first iteration of the loop, yielding the
increment value for the reference variable, applied after each
iteration. The default increment value is 1.
REPEAT: The expression accompanying this keyword is
evaluated after every iteration, and the result is added to
the reference variable.
TO: The expression accompanying this keyword is evaluated
once before the first iteration of the loop and when the
reference variable gets updated. The reference variable is
then checked to be in the allowed range. If not, the loop is
terminated.
FOREVER(/LOOP): If this keyword is present, the loop will
iterate forever, unless a LEAVE or GO TO statement is
encountered, or the program terminates.

A do-group can have a combination of while, until
and/or to attributes. If any of their termination conditions
are met, the loop is terminated.

3.2. The Raincode PL/I Legacy Compiler

The compiler that is the subject of our work is the
Raincode PL/I legacy compiler [19], from here on simply
referred to as ‘the compiler’. The compiler fully supports
PL/I syntax, and compiles it to the .NET platform [20].

Unlike the typical new code compilation use case, the
purpose of Raincode legacy compilers is primarily to com-
pile existing and possibly (very) old code, written for the
IBM mainframe platform, so that it runs on the modern
.NET platform [6]. As such, the goal of the compiler lies not
in achieving more efficiency, but rather in making the PL/I

language available outside of the old mainframe platform.
This goal comes with two specific requirements:

Syntax supported by the IBM compiler must be sup-
ported by the compiler. This is because even small de-
viations from the language definition could require many
changes in software portfolios, prohibiting porting them to
the new platform.

Behaviour of compiled programs should remain the
same after porting. This means that even bugs in the original
IBM compiler need to be reproduced.

The compiler is part of a larger tool set at Raincode that
allows for source code analysis and manipulation of various
legacy languages, e.g., also including COBOL. Part of this
toolset is the Raincode engine for PL/I: it preprocesses
a PL/I source file and parses it, yielding a parse tree
annotated with semantic information. User-written scripts
in the YAFL [21] programming language can then be used
to operate on the parse tree for analysis and modification.

3.3. Precomputation-Based Program Generation

Random compiler testing is a technique that aims to test
a compiler through a continually automatically generated set
of random input programs. For as long as specified, random
programs are generated. These programs are then compiled
and executed. If during either compilation or execution an
error arises, the program is saved for later analysis.

Nagai et al. [4] proposed precomputation-based pro-
gram generation: a form of random program generation
that generates programs in such a way that its result or
output is known beforehand (i.e., precomputed). This allows
the compiler testing flow to detect miscompilations causing
program crashes as well as those causing incorrect output.
Program generation starts from a trivial seed program that
does not print any output, but merely exits successfully.
On this seed program a number of transformation rules are
consecutively applied to generate the final result.

Introduced by Le et al. [2], Equivalence Modulo Input
(EMI) is motivated by the difference between statically
compiling a program P to work on all inputs, and executing
it dynamically on a subset of those inputs. Given P and an
input set I ∈ dom(P ) there exists some set of programs V
such that ∀Q ∈ V it holds that ∀i ∈ I P (i) = Q(i). The
set V is referred to as P ’s EMI variants or mutants.

Assuming there exists an oracle that given a program
P and some input I can produce (a subset of) P ’s mutants
V , this enables to test a compiler in the following way: let
the compiler compile P and all Q ∈ V . Then, execute all
compiled programs using I . If any of the programs failed
to compile successfully, or failed to produce the same result
as P , we have found a compiler bug.

To bring the above theory to life, we need actual im-
plementations of the oracle that produces mutants, which
typically happens by mutating an existing program. Lascu et
al. [22] specified three strategies for developing mutations:
Studying specifications: Investigating language specifica-
tion documents can lead to very detailed insights in how
the language functions and how certain features interact.



Consulting prior work and domain experts: Prior work
might be applicable to the current domain with slight modifi-
cations. Domain experts’ knowledge can provide experience
of ‘real world’ applications of the language and/or compiler,
which can serve as inspiration for mutations.
Deriving metrics from the compiler: Obtaining code cov-
erage while testing the compiler with the current set of
mutations can show which areas of the compiler remain
unexercised. This can inspire new mutations that specifically
attempt to target those areas.

4. The Program Generation Framework

We designed and implemented a precomputation-based
program generation and Equivalence Modulo Input frame-
work for PL/I and we present it in this section.

4.1. What to Generate

As established in Section 3.1, PL/I is a large and com-
plicated language. Because of this, it is infeasible to include
every part of the language in our program generation and/or
mutation processes. Inspired by the strategies presented by
Lascu et al. (see Section 3.3), we base our set of included
language constructs on two pillars: Consulting specification
documents and domain experts.

4.1.1. Studying specifications. We studied the official lan-
guage specifications (in the case of PL/I, this is the IBM
language manual [23]) to decide which constructs to include
and which to leave out. However, this document does not
include any details on how often a construct is used, or
how essential it is to the language. It fulfills the purpose of
explaining what is, rather than what is useful.

This is where Subset/G PL/I [15] comes in.
Subset/G PL/I is designed to “preserve the most useful
properties of PL/I” [18]. Because of this, we decided to
only include language constructs included in Subset/G
PL/I. However, not every language construct lends itself
well for random generation or mutation (for instance, be-
cause they require very specific circumstances to be valid).
This lead us to leave out the record I/O and interruption
handling constructs.

4.1.2. Consulting domain experts. We also consulted the
main developer for the PL/I compiler from Raincode, who
has worked extensively on developing their PL/I compiler,
for their advice regarding which language constructs to
focus on. Their suggestions included the following:
Initialization: This refers to the INIT keyword (see Section
3.1.1) used during variable declarations.
Loops: Loops, in the form of do-statements are extensively
covered by our program generator (see Section 3.1.2).
Dynamically sized types: These include any variables,
particularly arrays and procedure parameters, whose size is
determined at runtime.

Mixing types: PL/I allows for the definition of com-
pound data types, e.g., structures. This stresses the memory-
management part of the compiler, which is quite complex
as PL/I allows for both bit and byte-level alignment.

We incorporated all the suggestions of the domain ex-
pert, except for the last, as it would lead to a significantly
larger development effort.

4.2. Framework Design

The first design decision that has to be made with regards
to the framework is that of the sourcing of input programs.
Simply put, without an existing program, there is nothing
to mutate. For some languages, tools like CSmith [9] exist
that generate random programs, which can be used, poten-
tially after some analysis, as input programs. Unfortunately,
such tools are not readily available for PL/I. This leaves
us with the option to use manually written test cases as our
input, or build our own program generator. We chose the
latter of these two options as it allows for a greater diversity
in input programs.

An advantage to building our own generator compared
to using a pre-existing one, is that we have the ability to
control both which language primitives are added and which
technique we rely on for its generation process. For the
latter, we opt for precomputation-based program generation.
The main reason for this is because next to a generated
program, this method produces a state, bookkeeping the
value of every variable at every point in the program. This
information is essential to our approach, as our mutation
technique requires knowledge of which code is dead or alive
in order to execute mutations on it. Alternatively, we could
have opted for a generation technique that did not provide us
with this state bookkeeping. For example, Le et al. [2] take
this approach for their implementation, using an existing
profiling tool to extract this information from the generated
programs. Similar to the program generator, such a tool is
not readily available for PL/I and we would have to build
one ourselves.

During testing, it might be beneficial to limit or tweak
the behaviour of the framework. For example, a specific
combination of language constructs could lead to compila-
tion error. After a single program containing this error has
been analysed, further programs being generated with the
same error would be of little use. So, the tester may choose
to configure the framework in such a way that this combina-
tion of constructs can no longer appear in the same program,
in order to allow the framework to find as many different
bugs as possible. We have chosen to have modifications be
done directly in the code by the tester, as it arguably allows
the most fine grained control of the framework. Of course,
a notable drawback to this is that the tester needs to have
intimate knowledge of the implementation of the framework.

4.3. The Program Generator

The program generator starts from a trivial seed pro-
gram, shown in Listing 2, and a randomly selected set of



1 t e m p l a t e : PROC ( command line ) o p t i o n s ( main ) ;
2 d e c l a r e command line c h a r ( 1 0 0 ) v a r y i n g ;
3 d e c l a r e t a b l e ( 8 ) b i n a r y ;
4 d e c l a r e k b i n a r y i n i t ( 1 ) ;
5 d e c l a r e c c h a r ;
6

7 DO i = 1 t o l e n g t h ( command line ) ;
8 c = s u b s t r ( command line , i , 1 ) ;
9 i f c = ’ ’ t h e n k = k + 1 ;

10 e l s e t a b l e ( k ) = BINARY( t a b l e ( k ) | | c ) ;
11 END;
12 END t e m p l a t e ;

Listing 2. Seed program with the declaration of the external variable table array highlighted

external variables and produces a random program. This pro-
gram includes language constructs such as variable declara-
tions, if statements and variable assignments. It is produced
together with a state bookkeeping that indicates for every
line in the program what the value of every variable in the
program is at that point and whether the line will be executed
(alive) or not (dead) during program execution.

Our generator is split up into the following components:
External variable generation: A random set of variables

is generated that the resulting program will read.
Seed program: This program is shown in Listing 2. It

forms the basis for generation and includes the required
code to read out the external variables.

Variable declarations: A set of variable declarations are
the first things added to our seed program. They are
used as input for the following steps.

Variable assignments: The first use of our declared vari-
ables. Some of them are assigned a (new) value.

Control statements: These statements ‘wrap’ themselves
around a variable assignment, thereby complicating the
program’s control flow.

Print statements: Finally, print statements are added that
output the valuations of every variable.

We limit our discussion to three key elements of the
generator, due to a lack of space.

Variable Declarations: Each declaration exists of a
single binary variable or (multi-dimensional) array, possibly
also containing an initialization via the INIT language con-
struct (See Section 3.1.1). For every declaration, the variable
name, its dimensions and values are recorded, adding to the
state of the program we keep track of. Every line following
the declarations is paired with this set of information, denot-
ing the value of every variable at that point in the program.
Next to this, we add data about whether this line of code
is alive or dead, and which variable, if any, is altered on
this line. Note that this strategy is only feasible because we
have fine grained control over how our program is generated,
ensuring that, for example, only a single variable is ever
altered on one line and that we can predetermine ahead of
time whether a line of code will be alive or dead.

Variable Assignments: In these, the left-hand side con-
sists of a single variable (including index, if we are dealing
with an array) randomly chosen from our list of declared
variables. The right-hand side consists of a random integer

value. When adding this statement, we create a new state,
based on the state of the previous line, simply altering the
value for the specific variable we are updating. Where our
approach differs from earlier work, is that these simple
assignments are later not expanded into either multiple lines
or into more complicated arithmetic operations. This is a
deliberate choice, as our focus is not to target the arithmetic
optimization aspect of the compiler.

Control Statements: These take the form of if and do
statements (see Section 3.1.2). Here, we focus on genera-
tions of do statements.

First, we generate a variable initialization, in the form
i← some integer value or any of the declared variables.

Second, either a repeat or to/by keyword(s) is
added, chosen randomly, since they are mutually exclusive
options. For example, we add a to or by keyword, with
some integer or any of the declared variables as their value.
Since a combination of to and by can cause the body of
the statement to no longer be executed (see Section 3.1.2),
the framework determines this, and if the code is currently
alive, the state is updated.

Third, optionally a while keyword is added. A condi-
tion is produced with i as its left hand side, some integer
value or any of the declared variables as its right hand side,
and an arbitrary comparator. Again, since this can cause
the body of the statement to no longer be executed, the
framework determines this and updates the state if needed.

Fourth, an until keyword is optionally added. How-
ever, since the until clause only gets evaluated after
the first iteration, it does not influence liveness, and the
framework does not need to check for it.

Fifth and last, the framework generates either a leave
or goto statement with a corresponding label. This state-
ment is appended to the body of the do statement, ensuring
that the loop is only executed once at most, preventing
infinite loops.

4.4. The Program Mutator

The program mutator generates from a program and
its state bookkeeping a set of equivalent mutant programs,
complete with their own state bookkeeping. Our general
approach to creating mutants works as follows: as input
we take any program (either the program generated by our



generator, or a previous mutant) and its state bookkeeping.
We then randomly choose one of the mutation categories,
and one mutation within that category to apply. If this
mutation is successful (a mutation might fail because the
required entity, such as a dead assignment, might not be
available), we output the resulting program and its state
bookkeeping. This output is then fed back into the mutator.
This loop of feeding the result back into the mutator is
performed T times, creating mutants that differ more and
more from the original program. Compared to only applying
a single mutation step on our source program, we take this
approach to create more diverse mutants, as our program
generator and mutator utilize different language constructs.

We have three categories of mutations: dead code re-
moval, dead code insertion and live code insertion:
Dead code removal mutations remove a single dead state-
ment from the source program. Programs generated by our
generator contain two types of language structures that can
be dead: Variable assignments and DO-groups, potentially
made conditional with an IF statement. For each of these
cases, we construct a basic mutation technique. For variable
assignments, we remove the entire assignment and for DO-
groups, we remove the entire group, including its contents
and surrounding IF statement, if present.
Dead code insertion mutations insert a single dead state-
ment into the source program. Dead code insertion can
perhaps be considered the most ‘free’ type of mutation, as
it does not rely on certain language structures existing in
the code like dead code removal, nor is it constrained by its
runtime evaluation like live code insertion.

For our mutation strategies, we focused on the following
language constructs: Variable assignments, IF statements,
BEGIN-groups, SELECT statements, Procedures and STOP
statements. A complete discussion of these strategies is
outside of the scope of this text. Most importantly, dead
variable assignments are added at the beginning of dead
procedures, DO- or BEGIN-groups, and IF statements and
BEGIN-groups surround a dead variable assignment.
Live code insertion mutations insert a single live statement
into the source program. As the code that we insert will
actually be executed, it affects our program’s semantics,
requiring extra care. In this category, we implement mu-
tations based on three language constructs: IF statements,
Procedures and controlled variables. We discuss the first
two, since space does not permit us to expand on controlled
variables.

Given that we know for every IF clause whether it will
evaluate to true or false, we can also generate these clauses
in such a way that they will be true (or false, if that is the
desired result). Hence, for a given variable assignment, we
make the following two mutations: either put the assignment
behind an IF statement with a condition that evaluates
to true, or create an IF statement with a condition that
evaluates to false (with an arbitrary variable assignment)
and add the original assignment on the next line, possibly
preceded by an ELSE statement.

We implemented three different mutations based on pro-
cedures, one that takes a procedure, DO- or BEGIN-group

or a variable assignment and two that only take a variable
assignment. The first works similarly to the dead procedure
inserting mutation: it wraps the body in PROCEDURE and
END keywords accompanied by the procedure name. How-
ever, in order to make sure that the code inside still gets
executed, we append a line containing a CALL statement
(again, accompanied by the procedure name). The other two
mutations utilize procedures to calculate the right hand side
of an assignment, instead of the originally present value.

4.5. The Test Runner

The test runner ties the various parts of the framework
together. It manages compilation and execution of all gener-
ated programs and reports any errors that may have come up
in the process. The runner is comprised of four elements: the
parser, the compiler, the executor, and finally the comparator.

The input of the parser is the state bookkeeping of the
original, non-mutated program. To turn this bookkeeping
into the expected results of our programs, it takes the final
state of bookkeeping, which corresponds to the last line
in the program. It then parses this state, saving only the
variables and their corresponding values.

The other part of the input is the set of programs,
consisting of both the original, non-mutated program as well
as all its mutants. Every program in this set is compiled
using the Raincode compiler and the resulting .DLL files
are saved. If during compilation an error occurs, the program
and the output are saved for later analysis.

All .DLL files produced by the compiler are fed into the
executor one by one, together with the external variables
produced during program generation as a single string,
space-separated. All outputs of these executions are saved.
If any runtime errors occur, the program and its output are
saved for later analysis.

Finally, all results produced by the programs are read by
the comparator and saved in identical format to the expected
output that was produced by the parser in the first step. Then,
they are all checked for equality with the expected result.
If any actual result is not equal to the expected result, the
program and its output are saved for later analysis.

Note that if during the compilation, execution or com-
parison phase an error is detected in one of the programs,
further mutants will not be processed. This is done to prevent
the same error from being flagged multiple times, increasing
manual analysis time.

After passing all the above-mentioned steps, a wrapper
produces a new set of external variables, and the framework
is executed again.

5. Validation

To validate our work, we first ran the framework on a
version of the compiler with known bugs, to confirm that we
can indeed find these bugs. We then ran the framework on
the latest release of the compiler, in an attempt to uncover
as-yet unknown bugs.



5.1. Validation Runs Setup

To conduct our experiments, the following versions,
settings and tools are used:
A computer running a Linux-based operating system with
a six core (twelve thread) CPU running at a max of 4.2GHz
and 16GB RAM.
Raincode PL/I Compiler version 4.0.260.0 (26/05/2020).
The current timestamp (retrieved though Python’s time
library) is used as the seed for random generation. Every ten
minutes, the timestamp and seed are refreshed.

We chose this version of the compiler because of a bug
reported on this version concerning incorrect behaviour of
the do-group in some circumstances. Since our framework
tests the do-group behaviour extensively through the pro-
gram generator (see Section 4.3), it should be able to detect
this bug, thereby validating our approach.

We configured the framework in such a way that it will
continue to run until an error (either a compilation error,
a runtime error or a miscompilation) is detected in ten
different programs. For each of these types of errors, the
first error program of its category is saved along with:
Run A number indicating the run in which this category
was first encountered.
Seed used to generate this program, from the list of seeds
stored with the run.
Generator and mutator call This is the exact command
with which the generator and mutator are called, taking as
parameters the seed and external variables.
Runner call The command calling the program runner,
including the external variables as a parameter.
Error type when compiling and running this program:
compilation fault, runtime error, or miscompilation.
Mutant version This indicates which mutant caused the
error, or which is the first mutant to have this error (0 is the
original program).

After each run, the flagged programs are manually anal-
ysed to establish the underlying origin of the error, for
brevity we call this the kind of error. The framework is
then tuned in order to prevent it from generating the same
kinds of errors and it is run until it has flagged ten programs
as containing an error, or produced 100.000 programs. This
process was repeated four times.

5.2. Results of the Validation Runs

Table 1 shows the results of the four runs we conducted.

Run Iterations # of programs # flagged Kinds of errors
1 10 94 10 2
2 121 862 10 2
3 3.648 26.201 10 1
4 14.572 100.003 0 0

TABLE 1. VALIDATION EXPERIMENT RUNS

Run #1. The first run of our framework was done with
the stock configuration of the framework and was very

short, producing ten flagged programs in as many iterations
(containing 94 programs in total). This means that 100% of
the iterations produced a flagged program. Analysis of these
flagged programs resulted in two bug kinds: one related to
init statements (see Section 5.2.1) and one related to loops
with a zero-valued by expression (see Section 5.2.2).

Run #2. For the second run, we tuned the framework such
that init statements were only allowed to have a nesting
level of one and no zero-valued by values. As a result,
producing ten flagged programs was only reached after 121
iterations (containing 862 programs in total), or an ∼8.3%
rate of producing an erroneous program per iteration. Two
bug kinds were found among the flagged programs: another
related to init statements (see Section 5.2.3) and one related
to loops (see Section 5.2.4).

Run #3. One modification was done before execution of
the third run: the init statement nesting level was limited to
zero. This lead to flagging ten programs after 3648 iterations
(with a total of 26.201 produced programs), or a ∼0.3%
rate of producing an erroneous program per iteration. One
additional bug kind was uncovered: a runtime error related
to the while condition (see Section 5.2.5).

Run #4. To prevent the loop-related bugs (Sections 5.2.4
and 5.2.5) from reappearing, while conditions were disabled
from the framework. After 100.003 produced programs in
14.572 iterations, not a single program was flagged and we
terminated execution of the run.

Hence, our validation runs encountered five different bug
kinds. We discuss these next.

5.2.1. Init statement compilation error. The first kind
of bug we found is a compilation error. After manual
analysis of the program, we discovered it was triggered
by a controlled variable allocation. More specifically, in the
accompanying init attribute (see Section 3.1.1), the compiler
was unable to handle three-level deep nesting of repetitions
of values. For the sake of brevity, we do not include the
exact code that caused the bug, as the init statement by
itself is already 25 lines long. This bug was unexpected to
us, as we were only aware of issues with do-group behavior
in this version of the compiler.

5.2.2. Zero-valued by clause miscompilation. The second
type of bug we found is a miscompilation, which after
manual analysis we found to be related to the do-group be-
haviour (see Section 3.1.2). This is in line with what we ex-
pected to find, given that we selected this specific compiler
version on the basis that this behaviour would be incorrect
in some way. Listing 3 shows which part of the program
caused the miscompilation result. The state at this point
in the program is such that the dwqxmdspjg(-64,4)
variable, used for the by attribute, has the value 0. Our
hypothesis is that the compiler incorrectly assumes that any
by value must be ≥ 1 when the to value is greater than or
equal to the initial value of the reference variable. However,



67 . . .
68 p l n q g l f p n p ( 5 , 1 7 1 ) = 4 9 ;
69 IF tgzacmcvdc ( 1 2 0 , 4 4 ) <= 52 THEN DO i = tgzacmcvdc ( 1 2 7 , 8 2 ) TO t a b l e ( 2 ) By dwqxmdspjg ( −64 ,4 ) UNTIL (

i >= 17 ) ;
70 p l n q g l f p n p ( 1 9 , 1 6 0 ) = 6 9 ;
71 GOTO a w v s f e o k a i ;
72 END;
73 a w v s f e o k a i : ;
74 . . .

Listing 3. Bug-triggering program #2

14 . . .
15 d e c l a r e a p b b u d f t l f b i n a r y i n i t ( ( 5 ) ( ( 1 ) 43) ) ;
58 . . .
59 DECLARE oarcdmufyo ( −87 * −1) c o n t r o l l e d b i n a r y i n i t ( ( badgprfmnu ( 2 ) + 5) ( dcswogwwjd ( −15) , a p b b u d f t l f )

, −94 , (40 + −30) ( badgprfmnu ( −5) , 1 1 , ( 1 5 + −10) 58 ,84 ,93 , ( −80 + 86) t a b l e ( 7 ) , 6 5 ) , −51 , −79 , vcytmodcos
( 4 4 ) , −4 4 ,13 , ( a p b b u d f t l f + −40) p s z e j z j g k i , dcswogwwjd ( 2 ) ) ;

60 a l l o c a t e oarcdmufyo ( a p b b u d f t l f ) ;
61 . . .

Listing 4. Bug-triggering program #3

41 . . .
42 IF bzmqi lnqgs (76 , −30) <= ohvnbvybvk ( 1 1 0 ) THEN DO i = −63 TO 60 BY bzmqi lnqgs (77 , −18) + 1 ;
43 IF c x j z i e a j s p ( −87 ,28) <= 89 THEN DO i = −4 TO m s d d l b d i j y ( 6 5 ) BY bzmqi lnqgs (66 , −18) + 5 WHILE ( i

= bzmqi lnqgs (58 , −13) ) UNTIL ( i <= g l q f r o z s x l ) ;
44 m s d d l b d i j y ( 6 0 ) = 6 9 ;
45 GOTO scvzmkofq l ;
46 END;
47 scvzmkofq l : ;
48 GOTO c l n p f a j o y n ;
49 END;
50 . . .

Listing 5. Bug-triggering program #4

30 . . .
31 vsuwdtcwyp : ;
32 END;
33 IF 11 >= −9 THEN DO i = −64 REPEAT i * t a b l e ( 3 ) WHILE ( i >= a a l v d r b o a l ) ;
34 urpox l fvwo ( 0 , 1 4 6 ) = 4 7 ;
35 LEAVE;
36 END;
37 . . .

Listing 6. Bug-triggering program #5

the IBM language manual [23] states that any value ≥ 0 is
valid in this case. This causes the discrepancy in behaviour.

5.2.3. Init statement miscompilation. After the first run,
we limited their maximum level of nesting repetitions for
init statements to one, compared to the default value of three.
This lead to finding another bug related to init statements, a
miscompilation, shown in Listing 4. Our hypothesis is that
the repetition of one, nested inside the repetition of five is
incorrectly parsed as a value, rather than a repetition, leading
to the difference in value for the apbbudftlf variable and
thereby oarcdmufyo’s length during allocation. This bug
was unexpected to us, as we were only aware of issues with
do-group behavior in this version of the compiler.

5.2.4. While clause miscompilation. The fourth type of
bug we uncovered is shown in Listing 5. Like bug #2
(Section 5.2.2), this is a miscompilation related to the do
statement behaviour, where we expected to find bugs. Man-
ual analysis revealed that the miscompilation is in the area
of the while clause, which fails to prevent the loop from
executing and causes msddlbdijy(60) to get assigned
the value of 69.

5.2.5. While clause runtime error. The fifth and final type
of bug also has to do with the while clause of a do-group
and is shown in Listing 6. Rather than a miscompilation
however, this error causes the program to produce a runtime
error. Interestingly, if our initial manual analysis of the



previous bug (Section 5.2.4) had been more successful, we
would have disabled generation of while clauses before the
third run, rather than only disabling them after. However,
the analysis of this program gained us the insight that the
while clause is a problem in both programs. As such, we
disabled generation of it for our fourth run.

5.3. Confirmation of Validation Results

After analyzing and categorizing all bug-triggering pro-
grams, we discussed the results with the main developer
for the PL/I compiler from Raincode. They were able to
confirm to us that the flagged programs indeed revealed bugs
in that version of the compiler. They also stated that these
bugs were fixed in two separate changes:

do-group reconstruction: The entire section of the com-
piler that deals with do-groups was rebuilt on 22/06/2020,
which is why we selected this version of the compiler. This
fixed the bugs in Sections 5.2.2, 5.2.4 and 5.2.5.

init statement grammar fix: Unaware to us, in
09/11/2020 the grammar used for parsing init statements
was changed, fixing the bugs in Sections 5.2.1 and 5.2.3.
According to the main developer, Raincode was never aware
of the bug in Section 5.2.1 and the grammar was changed
to fix the bug of Section 5.2.3, incidentally also fixing the
bug in Section 5.2.1.

5.4. Testing the Current Production Compiler

As a last experiment, we used the Raincode PL/I Com-
piler version 4.1.184.0, released on 12/05/2021, which was
the latest release at that time. We ran our framework on this
version continuously for a week. This run did not produce a
single bug-triggering program (fortunately or unfortunately,
depending on the point of view). The results of this run are
detailed in Table 2.

Run Iterations # of programs # flagged Kinds of errors
1 100.000 718.033 0 0

TABLE 2. PRODUCTION TESTING RUN

This run was performed with the stock configuration of
the framework. In total, it took ∼ 180 hours to complete,
meaning on the above detailed hardware, ∼ 4000 programs
are generated per hour. Furthermore, each program contains
on average ∼ 81 lines of code. Compared to the seed pro-
gram, which contains just 12 lines, this means our generation
and mutation strategies insert on average ∼ 69 lines of code.

6. Related Work

There is a significant body of work on compiler testing,
with Chen et al. [1] providing an elaborate overview of the
current state of the art in compiler testing.

To the best of our knowledge, the idea of automatically
generating random test programs started by Hanford [7]
introducing his “syntax machine” over 50 years ago. It
contains an abstract grammar for little PL/I [24], a

subset of the PL/I language. The generation technique
includes the use of “syntax generators”, which are used,
for instance, to ensure that variables are declared before use
in the generated programs. It was used primarily to test a
compiler by simply checking for every generated program
whether the compiler could process it successfully (by not
crashing). Compared to their efforts, our approach not only
covers a larger set of PL/I language constructs, but perhaps
more importantly, is able to target the later stages of the
compiler, compared to only the parser. This is because we
are not only able to construct semantically valid programs,
but also predict their intended outcome.

CSmith [9] is a random test-case generator for C com-
pilers. Similarly to the “syntax machine”, it works by con-
tinually randomly selecting a feasible item from its abstract
grammar. It uses dynamic safety mechanisms (for instance
integer and type safety checks) to keep it from producing
any undefined behaviour or unspecified behaviour. They use
a method called differential testing [25] to determine the
correct output, meaning they compile and run their programs
on multiple compilers, and assume that the majority of
compilers give the correct result. This, of course, becomes
more reliable the more compilers are included. According
to Nagai et al. [26], CSmith is one of the most successful
compiler testing systems. Compared to CSmith, our ap-
proach does not need to rely on differential testing, which
is an advantage given the few PL/I compilers available
for modern systems. Furthermore, due to the difference
in programming languages and fine grained control our
approach has over the program state, we do not require the
dynamic safety checks they implement.

During the evaluation of their CSmith tool, Yang et
al. [9] found that ∼ 28% of the bugs they found in GCC
were related to arithmetic optimization. Nagai et al. [4]
state that arithmetic expressions are machine dependent, and
therefore prone to bugs due to the need for retargeting,
however Yang et al. [9] found that most (∼ 62%) of the bugs
they uncovered were in the machine independent middle
end of the compiler. Nevertheless, Nagai et al. [4], [26]
found numerous bugs in GCC and LLVM by focusing on
arithmetic operations using their tool, Orange3.

A different approach to avoid undefined behaviour is
introduced by Nagai et al. [4]. Their tool, Orange3, fo-
cuses on arithmetic optimizations and is able to pre-compute
the expected result of running the program, discarding any
program that would introduce unexpected behaviour. A side
effect of this is that no differential testing is needed to
check for miscompilations, as the correct answer is known
beforehand. The trade-off is that they included a very small
subset of the entire C language in their generated programs
loops [27] in order to realise this. Later work [26] improved
on this approach by preventing undefined behaviour by
adding constant values and ‘flipping’ operators. This work
inspired the design of Orange4 [5], on which we base the
design of our program generator.

Livinskii et al. [28] introduced YARPGen, a generation
technique avoids undefined behaviour by using static anal-
ysis, similar to Orange3 [4], but includes a much broader



subset of the C (and C++) language. They opted for static
analysis, rather than dynamic (as with CSmith [9]) because
they found that dynamic analysis sacrifices expressiveness.
Similar to CSmith [9], they use differential testing [25] to
determine correct program behaviour. Our approach differs
from YARPGen in that we do not have to rely on differential
testing, and our use of program mutation.

Mettoc [29] is the first tool to leverage mutative testing
to test a compiler, using the equivalence relation to construct
multiple equivalent mutants of a given source program. All
mutants are then compiled and executed. If one mutant gives
a different result (either a crash or miscompilation), then a
bug in the compiler is uncovered. This technique avoids
the need for a reference compiler such as with differential
testing [25]. Le et al. [2] alter this idea by no longer
requiring two programs to act the same under all possible
input values, but only under a predetermined input, and
executing the programs under that input. This technique
is called Equivalence Modulo Input (EMI). In the original
implementation, equivalent mutants are formed by removing
dead code from a given source program, but later iterations
added the ability to add dead code [10] and live code [3]
to broaden the set of possible mutants even further. They
use programs generated by CSmith [9] as the basis for
their mutations, which they profile using available tooling.
Our approach differs mainly in not relying on (unavailable)
external tooling for program generation and profiling, as
well as translating EMI mutation strategies to the PL/I
programming language.

Instead of starting with a non-trivial source program,
Nakamura and Ishiura [5] present Orange4, which starts
from a source containing only return 0;. Their definition
of equivalence does not consider program state, but rather
program output. Their mutations are constructed in such
a way that successful program execution equates to not
printing any output and exiting. ‘Verification’ statements (in
the form of conditionally printing output) are added to the
program to check whether computation succeeds. While the
original implementation only allows for declaration, assign-
ment, if and for statements, its range was later extended [30]
to include other language primitives such as arrays and
function calls. Our approach uses the theory presented in
this work as a basis for the program generator. However,
we modify it by omitting expression expansion, as we are
not focusing on the arithmetic optimizations of the compiler,
and removing the verification statements, instead appending
print statements that output the entire program state. These
modifications allow our approach to then utilize EMI-based
program mutation.

7. Conclusion and Future Work

Although compiler correctness is usually assumed, ac-
tually confirming their correctness is difficult, in part due
to their complexity. Automated testing techniques aim to
alleviate this issue by expanding the test set beyond the reach
of manual testing. Existing efforts of this kind largely focus
their attempts on modern compilers. However, the feasibility

of automated compiler testing for legacy compilers is a rel-
atively unexplored concept. We investigated this feasibility,
specifically the applicability of optimization-focused testing
techniques on a PL/I compiler.

Our work contains two major parts: a program generator
and a program mutator, which adapt the precomputation-
based program generation and Equivalence Modulo Input
(EMI) testing techniques for application to the legacy con-
text and PL/I programming language, respectively. Unique
to our approach is that while we utilize techniques which
traditionally focus on uncovering bugs in the optimization
phase(s) of a compiler, we purposefully disregard arithmetic
expressions and instead focus on covering the most impor-
tant language syntax. However, we have kept the overall
structure of these techniques in place, starting our program
generation from a trivial seed program and applying all
mutation categories that we are aware of.

We validated the design of our framework by testing
its ability to uncover known bugs on an older version of
the Raincode© PL/I compiler. During these experiments
we generated around 127.000 programs and our framework
uncovered five bugs. These bugs were triggered both by
programs produced by our program generator (two bugs)
and by their mutants produced by our program mutator
(three bugs). All of the bugs were acknowledged by a
developer as being bugs and all had been fixed in more
recent releases. We also tested the most recent release of
the compiler, generating around 718.000 programs in 180
hours of testing, but have not uncovered any bugs there.

The design of both our program generator and program
mutator are suitable for testing a PL/I compiler (RQ2 and
RQ3). Our approach, based on optimization-focused auto-
mated compiler testing techniques but adapted to focus on
including important language syntax rather than arithmetic
optimizations, is suitable for testing a legacy PL/I com-
piler. Because of our ‘black box’ treatment of the specific
compiler we tested, we anticipate that our approach gener-
alizes well to other PL/I compilers. We also demonstrated
that while generation and mutation strategies are specific to a
programming language, their design can be adapted to other
languages and contexts. Combined, this leads us to conclude
that our overall approach is suitable for automated testing of
various legacy compilers (RQ1). This is further supported
by the fact that our approach has minimal prerequisites
compared to other automated compiler approaches.

We identify five significant future work avenues. First,
including more PL/I constructs, such as multiple data types
and interrupt handling. Second, speeding up the bug-finding
process by prioritizing programs more likely to have bugs.
Third is to automatically reduce programs flagged by our
framework as bug-inducing to a minimal case. Fourth is
to use multiple PL/I compilers in a Differential testing
approach. Fifth and last is to research the applicability of
other automated compiler testing techniques in a legacy
context.
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