
Interactive Visualizations for Testing Physics
Engines in Robotics

Johan Fabry
PLEIAD and RyCh labs,

Computer Science Department (DCC),
University of Chile

Stephen Sinclair
Inria Chile

Abstract—Physics engines in robotics simulators should yield a
simulation that is physically faithful to the real world. However,
simple scenarios like dropping a ball on the floor already reveal
that this is not so. There is hence a need to be able to test such
engines in real world scenarios, to see where they are lacking. To
help to quickly and efficiently develop unit tests for real-world
behavior we developed a tool we call Live Tests for Robotics. In
this tool paper we show how its interactive visualizations allow
for the efficient construction of such unit tests.

I. INTRODUCTION

Physics engines are an important element of the toolchain
of robotic simulation software. Well-known examples are the
SimSpark simulation used in the Robocup Simulation league1

and the Open Dynamics Engine (ODE) physics engine for the
DARPA Virtual Robotics Challenge [1]. Noted conspicuously
in the DARPA challenge rules [2] is that physics engines
should be physically faithful to real world behaviour. Yet
empirical evidence shows that this is not always the case.
For example, we found that using the current version of the
Gazebo robotics simulator [3], if we drop a ball its behaviour is
radically different depending on the physics engine used. The
same setup will, with ODE, cause the ball to bounce when it
hits the floor, while with Bullet2 the ball does not bounce at
all! Clearly, at least one of the two engine behaves incorrectly.

Hence, what is required are unit tests of real world situations
to establish overall correct behaviours, and it should be possi-
ble to carry out these tests on several physics engines. To make
such tests easy to write, we developed a methodology and
toolset called Live Tests for Robotics (LT4R). In this tool paper
we show how, in LT4R, a small set of interactive visualizations
integrated in a live programming language enable the effective
construction of unit tests of physics simulators for robotics.

II. BACKGROUND AND RELATED WORK

The role of simulation in robotics has been acknowledged
widely, notably in the form of the Virtual Robotics Challenge
issued by DARPA in 2013, for which the Gazebo simulator
using ODE was selected as the competition physics engine
[1]. Tasks included controlling a walking robot, having it
sit in a car and drive, and grasping and manipulating a fire
hose. However, for ‘in-simu’ development to be transferable

1http://wiki.robocup.org/wiki/Soccer Simulation League
2http://www.bulletphysics.org

to real-world robotics, a simulation engine must of course be
physically faithful to real world behaviour [2]. For example,
in the Open Source Robotics Foundation’s 2014 online survey
on Gazebo, it was similarly found that “physics validation”
was the highest-voted topic [4].

Despite many advances in the area, differences between var-
ious engines can lead to differing behaviours such as those we
see in the bouncing ball example mentioned above. This being
said, there is often an expected behaviour that one can validate
by ‘eye-balling’ the results and an often-used method of testing
is comparing the Root Mean Square error of an object along
a motion path. However, one problem with the motion path
error approach is that due to the integration process, small
differences early on may lead to an accumulation of error,
skewing the evaluation when one is more interested in whether
the overall behaviour is correct—i.e., did the hand grasp the
object or did the car steer towards the goal.

There are some examples of the approach of verifying the
overall behavior in previous literature. For example, in their
comparison of 5 simulation engines, Erez et al. proposed using
short-time motion path error, in itself a unique and interesting
idea, but ultimately for their grasping task, measured simply
whether the object was successfully grasped for the duration of
the simulation [5]. In another example, Gowal et al. evaluated
a vehicle simulator based on a simple measure of how far the
ending position was from the desired position, ignoring details
of the full motion path [6]. Lastly, Castillo et al. suggested
taking advantage of the aforementioned error accumulation by
only looking at the final position of actors [7].

III. LIVE TESTS FOR ROBOTICS

As mentioned before, for transferability, a physics simula-
tion must be realistic, yet in the current state of the art it is easy
to find non-ideal behaviour, e.g., the simple bouncing ball.
There is therefore a need for tests that can establish to what
degree a given physics simulator is adequate to the simulation
at hand. Moreover, testing infrastructure should provide a
means to verify the overall behaviour of the simulation with
regard to the real world.

In this section we present our solution: Live Tests for
Robotics (LT4R). LT4R allows the rapid design of minimal
unit tests using a state-based model of expected behaviour.

Fig. 1: The UI of LRP showing the program of Section IV-B1. On the left is the code editor, on the right the running state
machine. The machine is in the rising state and the last transition taken is marked in dark blue. The middle top half shows the
hierarchy of machines, the bottom half shows a list of variables and their values, which can be set using the bottom textfield.

A. The Design of LT4R

Firstly, in LT4R the physics engines are tested off-line:
we use Gazebo non-interactively to run the simulation and
produce a log of motion paths of all the simulated objects as
a set of trajectories. The first advantage of this approach is
that these trajectories can then be consumed by several of our
tests, only requiring Gazebo to be run once for the execution
of all these tests. Second, generation of such logs can be fully
automated which then enables all tests to be automated.

As a second part of LT4R, we use state machines to encode
the world state, i.e., “what is happening now.” Such an encod-
ing allows to define different aspects of the required behaviour
as different state machines: one for each test. Furthermore, it is
arguably straightforward to do since there is a natural mapping
of the state of the world to a state in the machine.

Lastly, the goal of LT4R is to achieve maximum interactivity
in building and modifying the state machines, which is why
we use Live Robot Programming (LRP) using LRP, the state
machine is directly and interactively constructed. This makes
the development cycle minimal because a change to a machine
can be immediately and interactively tried out on the trajectory
under test. Moreover, LRP itself can be tailored to the task at
hand (as will be discussed in more detail in Section III-B).

More in detail, LRP is a programming language for the
specification of behaviours as nested state machines [8], [9].
The language follows the paradigm of live programming [10],
allowing for the direct construction, visualization and ma-
nipulation of the program’s run-time state. LRP is not tied
to a specific robot API: it currently supports programming
behaviours in ROS [11], the Lego Mindstorms EV33, and
the Parrot AR.Drone4. Moreover, LRP is not fundamentally
restricted to the development of robot behaviours: any type
of behaviour that can be specified as a nested state machine
can be programmed in LRP. The only requirement for inter-

3https://education.lego.com/mindstorms
4http://developer.parrot.com/

operation of LRP with other systems is the availability of an
API for Pharo Smalltalk, as LRP is implemented in Pharo.
To access such an API, LRP embeds Smalltalk in itself as
action blocks: blocks of Smalltalk code that can be triggers
for events, variable initializers or code that runs according
to the active state of the machine. Figure 1 shows the user
interface and visualization of LRP. Note the visualization of
the running machine, which is always in sync with code edits.
A full introduction to LRP is outside of the scope of this paper.
Instead we refer to the published literature [8], [9] as well as
the LRP website: http://pleiad.cl/LRP for videos.

B. The LT4R Implementation

For LRP to interoperate with external systems, an API must
be available for that system. In our case, we need to have some
API that allows for the LRP state machines to reason over
the recorded trajectories of a physics simulation. The LT4R
implementation is exactly this, and we discuss it here.

The conceptual model of the API is a replay of the trajec-
tories: Action blocks of LRP only have access to the physical
properties of the objects at the current point in time, called a
snapshot. The running of a test then consists of replaying the
trajectory snapshot by snapshot, where at each step in time
the state machine can react appropriately to that snapshot.

LT4R exposes the object trajectories as global variables,
in effect reifying the Gazebo object as a global variable in
LRP. This global variable has two methods: pose and velocity,
respectively for the object’s pose5 and velocity (in the current
snapshot). Each of these is a six-dimensional vector with
methods x, y, z and rx, ry, rz that give the scalar values
for the linear and angular components, respectively. Thus, for
example, to get the linear z velocity of the bouncing ball
example, if the object is called ball in Gazebo the expression
in the action block would be: ball velocity z.

5Pose is robotics terminology for position and rotation in 3D space.

Fig. 2: The trajectory UI showing a snapshot of the bouncing ball trajectory. The left lists all snapshots in order, the right shows
pose and velocity graphs for the current snapshot. Each component of these vectors can be plotted over time (by clicking on
the green glasses). At the bottom are start and stop controls as well as a slider for trajectory playback.

All objects also have the time method, which returns the
simulation time of the current snapshot, and there are two
global variables: startTime and stopTime that return the time
of the first and the last snapshot, respectively.

Crucially, LT4R provides a custom UI for the exploration of
object trajectories and control of playback, shown in Figure 2.
The current snapshot can then be manually picked from the
list and playback controls allow for moving through simulation
time. For the selected snapshot, for each object trajectory a tab
shows pose and velocity vectors as bar charts, together with the
exact values of their scalar components. Each component can
be plotted over time for the entire simulation run, examples
of which are shown in Figures 3, 4a and 4b. Notably, in these
plots hovering over the line produces a tooltip-like popup that
reveals the exact data of the point being hovered over by the
mouse pointer.

Together with the machine visualization, this UI effectively
allows for the interactive and live construction of the state
machines that encode the test. This development experience is
achieved by letting the user interactively experiment with the
passing of time, e.g., by using the slider to scrub through all
snapshots. He or she then sees the effects on the state machine,
and can change this state machine on the fly when needed.

IV. WRITING UNIT TESTS IN LT4R

A. Sliding cylinder

As a first simple test we consider a cylinder that slides
down an inclined plane. We found that in Gazebo when using
ODE, the cylinder slides down the plane in a straight line,
and remains standing on the inclined surface. In contrast, while
using Bullet, the cylinder tips over and quickly starts tumbling
end-over-end in the x, y and z axes. This tumbling can easily
be seen in the visualization of the test data, for example
in Figure 3b where the rotational velocity on the y axis is
plotted over time. Contrast this with the log data of Gazebo
for this experiment: 2030 twelve-dimensional datapoints for

the cylinder (plus the same for the box). Given the amount
of data, it is not possible to quickly ascertain what effect the
tumbling has on pose and velocity without the visualization.

For the sake of the example, let us suppose that the ODE
behaviour is accurate. Verifying correctness of behaviour can
then be encoded in a simple test, by asserting that the rotational
velocity of the cylinder remains 0. The code is as follows:

1 (machine s l i d e
2 (s t a t e g r e e n) (s t a t e r e d)
3 (on t u m b l i n g g r e e n −> r e d)
4 (event t u m b l i n g [
5 c y l i n d e r 1 v e l o c i t y ry > 0 .0001]))
6 (spawn s l i d e g r e e n)

By convention, if a test ends in a state named green we
consider the test passed, if it ends in any other state, we
consider the test failed. If a test reaches a state named red
during any moment of its execution it is an immediate fail.
The code above thus defines both a red and a green state (in
line 2) and declares (in line 3) that when the cylinder tumbles
the machine goes to the red state. Line 6 starts the machine in
the green state. Hence if at the end of the replay no tumbling
occurred, the test passes, and if the cylinder starts tumbling
the test immediately fails. Lines 4 and 5 declare what it means
for the cylinder to tumble: the rotational velocity of y (e.g.,
as shown in Figure 3b) is bigger than (nearly) zero.

The use of a minimum of 0.001 is required here because
without it the ODE tests would also fail—the y rotational
velocity does not remain exactly at 0. This is revealed by the
plot of the data of ODE, where hovering over the datapoints
reveals their value to be slightly less than 0.0001.

B. Bouncing ball

Returning to the bouncing ball example, we now present
two different tests that can be made on the same trajectory of
a dropped ball. This is to illustrate the different features of
our solution as well as to show the construction of different
unit tests.

(a) Stop-motion of the Gazebo simulator showing the cylinder rotating
around the y-axis as it tumbles down a plane.

(b) LT4R plot of the rotational velocity of the cylinder around the y-axis
over time.

Fig. 3: The tumbling cylinder when using Bullet.

1) Three Bounces: Using Bullet, dropping the ball does not
cause it to bounce, conversely in ODE it bounces three times,
which is revealed by the visualization shown in Figure 4a.
Note that the underlying data are 3604 twelve-dimensional
datapoints, which again makes this real-world property of
an object in the simulation difficult to ascertain without the
appropriate visualization.

Given the physical properties of the ball, it should bounce
a non-zero number of times. Also, under the same starting
conditions this number should always be the same. Let us
therefore encode this in a test, supposing that the ball should
bounce exactly three time.

1 (var c o u n t : = [0])
2 (machine bounceCoun te r
3 (s t a t e f a l l i n g)
4 (s t a t e r i s i n g
5 (onentry [c o u n t := c o u n t + 1]))
6 (on goingUp f a l l i n g −>r i s i n g)
7 (on goingDown r i s i n g −>f a l l i n g)
8 (event goingUp [b a l l v e l o c i t y z > 0])
9 (event goingDown [b a l l v e l o c i t y z < 0])

10 (event endWell
11 [b a l l t ime = s topTime and : [c o u n t = 3]])
12 (s t a t e g r e e n)
13 (on endWell f a l l i n g −> g r e e n)
14 (on endWell r i s i n g −> g r e e n))
15 (spawn bounceCoun te r f a l l i n g)

This machine has states for the ball falling (line 3), rising
(lines 4 and 5) and transitions between the two states (lines
6 and 7), as well as the events (lines 8 and 9) that use the z
velocity of the ball to trigger these transitions. The machine
keeps a counter in a count variable (line 1), initialized to 0.

To increase the variable on each bounce, line 5 contains an
on-entry action to the rising state. (In LRP, states can define
actions that are executed atomically when entering a state,
when leaving a state, and when being in a state.)

Line 10 defines the event that causes the machine to go to
green (line 12), which can happen irrespective of whether the
ball is falling (line 13) or rising (line 14). The code of the
event checks if the time of this snapshot is equal than the last
time recorded (stopTime). If this is the case, we are at the
last snapshot of the simulation and should therefore decide if
the number of bounces is correct.

This test is constructed step by step, using different features
of the UI. First the machine is built for rising and falling (lines
3-9 without line 5). By moving the slider of the trajectory UI
(of Figure 2), the user then moves time forwards and back,
observing the z velocity of the ball in the trajectory UI and
confirming that the visualization of the machine shows it is
in the corresponding state. Then the counting logic is added
(lines 1 and 5), and again the user can verify that this logic
is correct by moving in time and seeing the variable count
increase in the variable view. The user can reset the variable
to 0 in this view, and then perform a playback of the entire
trajectory to see that the number of bounces is 3. Adding lines
10 to 14 then completes the test code, and the user can run the
test interactively to verify correctness. Note that, once in the
green state, the machine cannot transition to any other state.
The user can however pick a state in the machine visualization
and, through a context menu, force the machine into that state,
such that he or she can keep experimenting.

(a) The z position of the ball over time, in ODE.
(b) The z position of the ball over time, in Siconos.

Fig. 4: Ball bouncing behavior depending on the physics engine, as plotted by LT4R

2) Bounce Height Descends Sensibly: In order to develop
a more refined test for bouncing ball behaviour, we defer to
an example from the Siconos non-smooth dynamical system
simulator6, developed by the BeBop group at INRIA, since
we knew it to contain an accurate simulation of the bouncing
ball as compared to the closed-form solution [12]. An image
of an example trajectory from the Siconos simulation can be
seen in Figure 4b.

Figure 4 allows to see at a glance the behaviour of ODE and
the behavior of Siconos. Looking at the visualization of ODE
the user can immediately see that there is an issue: the third
bounce is unexpectedly low. Conversely, the visualization of
Siconos shows a more realistic descent of bounce height for
each sufficient bounce. Note that from the raw data it is nearly
impossible to see this difference in behavior, again illustrating
how a simple visualization is an efficient tool in this setting.

For a test of this behavior, we wish to verify that energy
loss is consistent between bounces, and thus the ratio of the
top of any bounce to the previous should remain the same
within some comparison interval.

Fig. 5: The bounceLower machine when measuring. Note
the thicker border on measuring and bouncing, indicating
the presence of a nested machine.

To save space we will not reproduce the code of this
machine here. All that is needed is a way to determine what
the correct ratio is between each bounce, and then check it at
each bounce. To do this, the bounceLower machine, shown
in Figure 5 contains two nested machines, each a variant of the
bounceCounter machine we have seen previously. The first
machine measures the ratio as follows: it records the initial
height of the ball in a variable top and the lowest height in
a bottom variable when entering the rising state. The second
time it enters the falling state it records ratio := (ball pose
z - bottom) / (top - bottom). This machine then immediately
ends and a transition is taken to to the measuring machine. In
this machine, each time the falling state is entered, the ratio
between the current height and the last highest point is checked
for correctness. As a result the test will failing if bounce height
descends in a non-sensible fashion.

This test is constructed interactively by the user, first making
the bounceLower machine and nesting the two bouncing ball
machines. The measuring machine is then refined, adding the
code for measuring the rate, and this is tested interactively

6http://siconos.gforge.inria.fr

by moving the slider forward until the measured value of
ratio becomes non-null. This can be seen in the variable view
of the UI. The user can check if the computed ratio makes
sense, i.e., the specified computation is correct. A transition
guarded by a non-null test of ratio is then added, making
the machine immediately transition to the bouncing machine.
This machine can then be refined, first adding the testing logic
and then moving the slider forward to where the ball starts
falling. There, the testing logic is run and the user can verify
if the behaviour is correct. Note that the user can also manually
change the ratio value to force a different outcome of the test,
and furthermore force the state machine in a specific state to
keep on experimenting with the test implementation.

V. CONCLUSION

In this paper we presented the interactive visualizations of
LT4R, a tool we created for the writing of unit tests for physics
engines in robotics simulators. We have discussed three dif-
ferent unit tests and talked about how the visualizations aid in
the rapid construction of these tests. The goal for LT4R is to
enable the construction of suites of such unit tests, which will
aid in the development and fine-tuning of physics engines.

ACKNOWLEDGMENT

We would like to thank Sebastian Maass for identifying
the tumbling/sliding cylinder scenario while testing Gazebo’s
physics engines at Inria Chile.

REFERENCES

[1] J. M. Hsu and S. C. Peters, “Extending open dynamics engine for
the DARPA virtual robotics challenge,” in Simulation, Modeling, and
Programming for Autonomous Robots, ser. Lecture Notes in Computer
Science, D. Brugali, J. F. Broenink, T. Kroeger, and B. A. MacDonald,
Eds. Springer, 2014, vol. 8810, pp. 37–48.

[2] DARPA, “DARPA Robotics Challenge: Virtual robotics challenge rules,”
Mar. 2013, dISTAR Case 21064.

[3] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in Conf. Intelligent Robots and
Systems, Sendai, Japan, Sep 2004, pp. 2149–2154.

[4] O. S. R. Foundation, “Gazebo blog: Gazebo survey results,” http:
//gazebosim.org/blog/survey 2014, 2014, online. Accessed: 27-05-2016.

[5] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-based
robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX,” in
Conf. Robotics and Automation (ICRA). IEEE, 2015, pp. 4397–4404.

[6] S. Gowal, Y. Zhang, and A. Martinoli, “A realistic simulator for the de-
sign and evaluation of intelligent vehicles,” in Intelligent Transportation
Systems (ITSC), 2010 13th International IEEE Conference on. IEEE,
2010, pp. 1039–1044.

[7] P. Castillo-Pizarro, T. V. Arredondo, and M. Torres-Torriti, “Introductory
survey to open-source mobile robot simulation software,” in Latin
American Robotics Symposium and Intelligent Robotic Meeting (LARS).
IEEE, 2010, pp. 150–155.

[8] J. Fabry and M. Campusano, “Live robot programming,” in Advances
in Artificial Intelligence – IBERAMIA 2014, ser. LNCS, A. Bazzan and
K. Pichara, Eds., no. 8864. Springer-Verlag, 2014, pp. 445–456.

[9] M. Campusano and J. Fabry, “Live robot programming: The language,
its implementation, and robot API independence,” Science of Computer
Programming, 2016, to appear.

[10] S. Tanimoto, “VIVA: A visual language for image processing,” Journal
of Visual Languages & Computing, vol. 1, no. 2, pp. 127–139, 1990.

[11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA workshop on open source software, no. 3.2, 2009, p. 5.

[12] B. Brogliato and V. Acary, “Numerical methods for nonsmooth dynam-
ical systems,” Lecture Notes in Applied and Computational Mechanics,
vol. 35, 2008.

