
Engineering a Converter between two
Domain-Specific Languages for Sorting

Johan Fabry
Raincode Labs

Brussels, Belgium
johan@raincode.com

Ynès Jaradin
Raincode Labs

Brussels, Belgium
ynes@raincode.com

Aynel Gül
Raincode Labs

Brussels, Belgium
aynel@raincode.com

Abstract—Part of the ecosystem of applications running on
mainframe computers is the DFSORT program. It is responsible
for sorting and reformatting data (amongst other functionalities)
and is configured by specifications written in a Domain-Specific
Language (DSL). When migrating such sort workloads off of the
mainframe, the SyncSort product is an attractive alternative. It
is also configured by specifications written in a DSL but this
language is structured in a radically different way. Whereas the
DFSORT DSL uses an explicit fixed pipeline for processing, the
SyncSort DSL does not. To allow DFSORT workloads to run on
SyncSort we have therefore built a source-to-source translator
from the DFSORT DSL to the SyncSort DSL. Our language
converter performs abstract interpretation of the DFSORT spec-
ification, considering the different steps in the DFSORT pipeline
at translation time. This is done by building a graph of objects
and key to the construction of this graph is the reification of
the records being sorted. In this paper we report on the design
and implementation of the converter, describing how it treats
the DFSORT pipeline. We also show how its design allowed for
the straightforward implementation of unexpected changes in
requirements for the generated output.

Index Terms—Domain-Specific Languages, Language Conver-
sion, Legacy Systems

I. INTRODUCTION

Mainframe computers typically provide for a wide variety
of programs as part of the standard installation. One such
program is IBM’s DFSORT [1], which is responsible for
sorting and reformatting data (amongst other functionalities).
The use of DFSORT can be a key part of a software system on
the mainframe, complicating efforts to migrate such systems
to more common software and hardware environments.

SyncSort is a historical competitor to DFSORT that runs on
Windows and Unixes, with a similar feature set as DFSORT.
Hence, in the context of a migration it can be used to
handle the sort aspect of a software system. Migration of the
sort then consists of translating the specifications how how
sorting should be performed. DFSORT is configured by spec-
ifications written in a Domain-Specific Language (DSL) [2]
[3] and SyncSort is also configured using a DSL. However,
the two DSLs are radically different and transformation of
DFSORT configurations to their SyncSort equivalent is not
evident, as we show later in this paper. In our experience, there
typically are thousands of sort configurations to be migrated,
so manually translating them is not advisable.

To allow DFSORT workloads to be migrated to a Syncsort
installation, Raincode Labs has developed a language con-
verter [4] between the DFSORT DSL and the SyncSort DSL. In
its current version, it treats files for different Raincode Labs
clients, in total translating around 33.000 files successfully.
The design of the language converter is a three-phase process
of a parser, a model builder and a code generator. Notably, the
model builder performs abstract interpretation to recreate the
steps in the DFSORT processing pipeline, support for which
is missing in the SyncSort DSL.

In this paper we report on the design and implementa-
tion of a language converter that translates programs in the
DFSORT configuration DSL to their equivalent in the SyncSort
configuration DSL. As far as we know, this is the only transla-
tor for this domain and this is the first time that the design of
an industrial language converter for DSLs is presented in sci-
entific literature (no reported DSL translators [2] [3] [5] have a
DSL as target). We detail how the DFSORT processing pipeline
is followed by the translator and how this makes it possible
to construct models of equivalent SyncSort configurations. We
also show how reuse inside the translator is enabled by follow-
ing the DFSORT processing pipeline. Lastly we illustrate how
we were able straightforwardly accommodate change requests
for the output by modifying the code generation phase of the
translation. In our experience, the three-phase process of a
parser, a model builder and a code generator has shown to be
an outstanding design for this language converter.

In this paper, we will first describe DFSORT, its processing
pipeline and DSL in Section II. We then talk about SyncSort
and its DSL in Section III. Section IV describes the design and
implementation of the translator, and Section V talks about
requirement changes. Section VI then concludes the text.

II. MAINFRAME SORT

On the mainframe, file handling is radically different from
how it is done on more modern operating systems. For one,
(almost) all files on the mainframe are considered as a list of
records. Even plain text files are a list of records consisting of
80 bytes, where each record is initialized with spaces1 Thanks
to this structured approach of files, the operating system can

1Text file line size on the mainframe is always 80 columns.

provide for more file handling utilities. One of these is the
sort utility, called DFSORT [1].

As can be expected, the main purpose of DFSORT is to sort
a file: it takes a list of keys and sorts all records in the order
defined in those keys (ascending or descending). Keys are
defined by giving an offset in the record, a length for the key in
bytes, its datatype and a sort order. DFSORT can sort character
fields as well as the different binary data formats available
on the mainframe. In addition to sorting, DFSORT can merge
different files into one file, join the records of two different
files into records of one file, and even produce reports for a
file. A discussion of all these features is out of the scope of
this paper, instead here we will focus on sorting.

To configure the behavior of DFSORT, the user provides
a list of “DFSORT program control statements”. This is
essentially a declarative description of how the sort should be
performed, written in a Domain-Specific Language (DSL) [2]
[3] In this text, we call such sort configurations sort programs.
We omit a detailed description of the DSL here, as the IBM
manual [6] chapter that describes it is 400 pages long.

SORT FIELDS=(42,1,PD,D,2,20,CH,A),EQUALS

Fig. 1. A basic sort program.

A simple example sort program is given in Figure 1. It states
that the sort should happen with primary key being the binary
data in Packed Decimal format at byte 42, in descending order,
and secondary key being the characters from byte 2 to 22, in
ascending order. Moreover, the sort should be stable, i.e. equal-
keyed records in the input must be in the same order in the
output.

But the sort is more than just a simple sorting of records.
The internal flow of a sort operation is described as a pipeline
of 14 different stages [6], and in this text we will treat 7 of
these stages. They are as follows:

1) Include / Omit: When records are read, they can be
filtered by including or omitting them based on conditions on
fields. These conditions allow fields to be compared with each
other or with constants, and conditions can be compounded.
For example, consider the code in Figure 2: if the two
characters at position 24 are equal to the character constant
JF or the value at position 344 is different from -1, the record
will be omitted.

OMIT COND=(24,2,CH,EQ,C’JF’,OR,
344,1,PD,NE,-1)

Fig. 2. An OMIT with a compound condition.

2) Inrec: Before records are passed to the sort, they can be
modified in five different ways. For brevity, we only discuss
three of them here. Firstly, a new record can be built by
combining parts of the original record and/or constants. For
example:
INREC BUILD=(1,20,CABC,5C*,

15,3,PD,EDIT=(TTT.TT))

This builds a new record that consists of the first 20 bytes
of the original record, the character string ABC, five times the
* character, and the three Packed Decimal bytes at position
15 that are converted to a printable number with 3 characters
before the dot and two after the dot.

Secondly, data can be overlaid onto the record, effectively
replacing only the part of the record as specified. For example:
INREC OVERLAY=(20:X40,60:20,1)
The above statement alters the record such that the hexadec-

imal value 40 (an EBCDIC space) is put at position 20 and
the byte that was at position 20 is put at position 60.

Thirdly, the above two modifications can be conditionally
performed to, for example, to compute an absolute value:
INREC IFTHEN=(WHEN=(20,5,PD,LT,0),

OVERLAY=(20:(20,5,MUL,-1,
TO=PD,LENGTH=5)))

If the indicated value is less than 0, it is multiplied by -1,
the result is cast to a packed decimal of length 5 and overlaid
at the same position.

Multiple IFTHEN clauses can be specified, and for each
clause it can be decided if INREC processing for this record
should continue or stop.

3) Sort: This is where the actual sort happens. Note that
since the records that are sorted are those leaving the INREC
stage, sort keys relate to the record produced by INREC.

4) Outrec: Once records have been sorted, they can again
be transformed. Essentially these are the same transformations
as in INREC, but here a record can be constructed that does
not contain the keys, since the sort already happened.

5) Outfil: DFSORT reads its data from a standard input
stream and writes it to a standard output stream, both config-
ured by the user when calling DFSORT. The DFSORT program
control statements can however also specify multiple output
streams, and the records will be written to each of these
OUTFIL streams instead of the standard output stream. Each
of these streams can also be individually modified, as follows:

6) Outfil Include: This is a filter as in step 1, but it filters
only data going out to this file. This allows, for example, to
distribute the output records to different files, depending on
the value of a part of the record, i.e., a control field.

7) Outfil Outrec: This is the same functionality as the
record creation in steps 2 and 4, but it constructs the record
for this specific output. This allows, for example, to remove
the control field in the output of the previous example.

III. SYNCSORT

SyncSort is a historical competitor to DFSORT, available
on the mainframe since the “early 1970’s” [7]. It was built
to outperform DFSORT and supports most of the features
of DFSORT, including, e.g., reporting. It is considered to be
“the first non-IBM product in an lot of customer sites” [7]
and runs on Windows and Unixes since 2004. As such, it is
an outstanding product to be considered for migrating sort
workloads from the mainframe to such systems.

The SyncSort program is configured, analogously to
DFSORT, in a sort program written in a DSL. But the problem

for a migration is that this DSL is fundamentally different
from the DFSORT DSL. Whereas the previous DSL maps
straightforwardly to the processing pipeline of the sort, this
one does not map to such a pipeline. Instead, the SyncSort
language mainly talks in terms of operations on fields. Due
to legal requirements, we cannot explain the specifics of this
DSL here. Instead we talk about the keywords of the language
that are relevant to this text using an invented syntax.

There are around 60 keywords in the language. We will only
describe 8 of them here:

1) Def Field: In this DSL, fields are given a name (using
the typical syntax allowed for identifiers), offset, length and
datatype. One Def_Field may define multiple fields this
way, and there may be multiple Def_Field definitions in
the program. Note that the field offset considers the record as
read from the input stream, as there is no sort pipeline as in
DFSORT. For example, consider defining the same two fields
as in Figure. 2, naming them Id and Stat respectively. This
is done as follows:
Def_Field Id(24,2,CHAR), Stat(344,1,PD).
2) Def Calc: Syncsort can perform a wide variety of

calculations on fields and constants. This keyword defines
a name for a ‘field’ that is calculated by evaluating an
expression. Allowed expressions are field names, constants,
arithmetic expressions, if-expressions (with conditionals as
described below), data type conversions, multiple kinds of
string operations, and more.

3) SortKeys: The order and direction of sort keys is defined
by referring to the names of fields or calculated values. For
example, a primary key Id, sorted ascending and a secondary
key Stat, sorted descending, is specified as follows:
SortKeys Id(A), Stat(D).
4) Def Cond: Conditions are given a name and an expres-

sion that refers to field names, calculations or constants. For
example, below is the equivalent to the condition of Figure 2,
with ID and Stat defined as above.
Def_Cond OCond(ID=="JF" || Stat!=-1).
5) Def Output: This is equivalent to stage 5 in the

DFSORT pipeline: describing which files on disk the records
should be written to. In contrast to DFSORT however, there
should be at least one such definition.

6) Keep, Remove: Records can be filtered out of the incom-
ing stream of records to sort, or out of the stream of records
that are written to disk. These keywords take one single
argument: the name of the condition for inclusion or omission
of the record. The location of the keyword in the program has
a meaning: if it appears before the first output file definition,
the filter is as in phase 1 of the DFSORT pipeline (Include /
Omit), while if it appears after an output file definition, it is
as in phase 6 of the DFSORT pipeline (Outfile Include).

7) Def Record: When writing to disk, new records can be
constructed out of fields, calculations and constants. The new
record basically consists of the concatenation of named fields,
named calculations or constants. Again the location of the
keyword has meaning: it applies to the most recently defined
output file.

From this list of keywords, it is apparent that converting a
sort program in the DFSORT format to the Syncsort format
is not guaranteed to be a straightforward task. Simple sort
programs as in Figure 1 are easy to translate. In the SyncSort
syntax it could be as in Figure 3.

Def_Field Primary(42,1,PD).
Def_Field Secondary(2,20,CHAR).
SortKeys Primary(D), Secondary(A).
Def_Output <omitted>.

Fig. 3. The equivalent of Figure 1 in the Syncsort DSL.

However, when DFSORT record transformations in INREC
or in the different OUTREC are specified, it can become
complicated to establish, respectively, the values for the sort
keys, or what is being written to disk. Consider for example
the simple sort program of Figure 4.

INREC BUILD=(1,8,24,2,9,15,26,14)
SORT FIELDS=(1,20,CH,A)

Fig. 4. A DFSORT sort program with an INREC.

The SyncSort equivalent sort program in Figure 5 requires
us to define five sort fields, a calculated field concatenating
three of them to be used as a single sort key and an output
record that is the concatenation of four fields:

Def_Field F1(1,8), F2(24,2), F3(9,15),
F4(26,14), F5(9,10).

Def_Calc Cc1 F1,F2,F5.
SortKeys Cc1(A).
Def_Output <omitted>.
Def_Record F1,F2,F3,F4.

Fig. 5. The equivalent of Figure 4 in the Syncsort DSL.

When IFTHEN is used in the DFSORT specifications, con-
structing the equivalent for SyncSort quickly becomes quite
extensive and complex. Due to size constraints, we do not
include such an example here.

In brief, transformation of the definitions of sort program
from DFSORT to SyncSort is not evident. Moreover, in our
experience, sort workloads typically contain thousands of
sort programs. Therefore, manually translating these programs
as part of the migration project is not recommended, as it
will take a large amount of time and the chance of er-
rors in the translation is significant. Consequently, while the
SyncSort product at first glance seems suitable for allowing
DFSORT workloads to be migrated off of the mainframe, the
difference in configuration DSLs poses a substantial hurdle for
such migrations.

IV. THE SYNCSORT TRANSLATOR

To allow DFSORT workloads to be migrated off of the
mainframe onto a SyncSort installation, Raincode Labs has de-
veloped a source-to-source translator for sort programs. This is

essentially a language converter [4] between the DFSORT DSL
and the SyncSort DSL. To the best of our knowledge, this is
the only translator for this domain. Moreover, as far as we
are aware, this text is also the first time that the design of
a language converter from a DSL to a DSL is presented in
scientific literature [2] [3] [5].

In this section we report on the design and implementation
of the translator. The goal of the translator is explicitly not
to cover all features of the DFSORT DSL. Instead we have a
corpus of programs of multiple clients of Raincode Labs that
needs to be adequately covered (the exact details of which
are confidential). We identified groups of language features
present in the corpus and developed the translation in steps:
we implemented support group by group so that in each step
the number of translatable programs increased.

The translator is written in C# and is a three-phase process
consisting of a parser, a model builder and a code generator:

A. DFSORT Configuration Parser

The first step of the translator is parsing the sort program.
Raincode Labs has developed an in-house parser generator
that is used to specify the parser for DFSORT programs.
The parser generator is a variant of PEG [8] with various
improvements such as packrat parsing [9]. A discussion of
the parser generator is out of the scope of this text, and we
cannot divulge the full grammar for the DFSORT parser for
commercial reasons. Suffice it to say that the grammar is
around 400 lines of code and it contains 86 non-terminals.

The parser produces a DFSORT configuration: an abstract
syntax tree (AST) of the sort program that is subdivided in five
main parts that mirror the structure of the DFSORT pipeline:

1) Include: The include or omit filter of the pipeline is kept
as a tree of condition objects. Primitive conditions include
comparing between fields and comparing fields to constants,
where fields are instances of a Field class and constants
instances of a Constant class. Composite conditions (con-
junction and disjunction) are binary. Sort programs can only
contain an INCLUDE orn OMIT condition, not both, so we
only keep a condition for include. If the program specifies
an OMIT condition it is negated, which produces a new
condition tree (instead of bluntly wrapping the tree in a
negation operator).

2) Inrec: Arguably the biggest part of the grammar
treats the transformation of records as used in INREC
and both OUTREC. Parsing such transformations yields a
Transformation object. Put simply, such an object is a list
of fragments where the transformed record is the concatenation
of the list of fragments. Each fragment hence describes a
transformation to one specific field, e.g., an arithmetic opera-
tion, a datatype and length change, a constant, and so on. All
fragments are kept as objects, and each kind of fragment is a
different subclass of a common ancestor.

3) Sort: The keys of a sort are kept as a simple list
of SortField objects. SortField is a subclass of the
Field class mentioned above, adding one extra instance
variable for the direction to sort.

4) Outrec: The specification of the transformation of the
(sorted) results of the Inrec phase are kept as the Outrec AST.
This is also an instance of the Transformation class as
described previously, hence seamlessly reusing all the parser
logic for transformations.

5) Outfil: The list of OUTFIL statements, if any, is kept
here. Basically, each object in this list wraps an include
condition and outrec transformation. Both of these seamlessly
reuse the parser logic for building the conditions and transfor-
mations, respectively.

B. SyncSort Model Builder

The second phase in the translator produces a model for
the SyncSort sort program that will be produced in the next
phase. The SyncSort model builder in effect performs abstract
interpretation of the DFSORT sort program, considering the
different steps in the DFSORT pipeline at translation time.
The model that results is a graph of objects and key to the
construction of this graph is the reification of records. Records
are objects that are aware of their internal structure as a
concatenation of fields and are the sole entity responsible for
the creation of fields.

The builder proceeds through the different steps of the
pipeline as follows:

1) Include: Starting from a blank input record, the builder
constructs an include condition tree, where references to fields
are resolved by the input record. Since it is blank, creation of
fields corresponds to simply creating field objects with offset,
length and type as given in the sort program.

2) Inrec: If an INREC has been defined, the builder creates
a new record by first treating the different fragments of the
transformation. Each of these are converted to their SyncSort
equivalent. Broadly speaking, for each DFSORT kind of trans-
formation fragment (recall that these are distinct C# classes),
the builder creates the equivalent SyncSort counterpart as
a graph of (different) C# classes. After all fragments are
treated, a new record is then instantiated with contents the
concatenation of these different fragments. If no INREC has
been defined, the result of this step is the original input record.

For simple BUILD transformations that do not manipulate
the underlying fields as in Figure 4, a fragment corresponds
to the creation of a field object by the input record created
in step 1. More complex transformations, such as IFTHEN,
usually result in a Def_Calc where the expression of the
calculation is a graph of concepts of the SyncSort DSL, e.g.,
for IFTHEN an if-expression would be used.

This part of the translator is arguably the most intricate,
mirroring the complexity of the transformation of records
in the grammar of the parser. In the translator, there are
30 classes whose major responsibility is modeling a record
transformation fragment in terms of the features offered by
SyncSort.

3) Sort: A sequence of sort keys is then built by asking the
record produced in step 2 to provide field objects for the keys
defined in the DFSORT program.

For example, consider the translation of Figure 4, shown
in Figure 5, We have one sort key with offset 1 and length
20. The record is a concatenation of F1, F2, F3, F4. When
requested for a field with offset 1 and length 20, the record
responds with a new concatenation Cc1 that contains F1, F2,
and a newly created F5. The creation of F5 was necessary
because F3 is 5 bytes too long. Hence F5 was created with
the same offset as F3 but with length 10 instead of 15.

4) Outrec: If an OUTREC has been defined in the
DFSORT sort program, the builder creates a new record based
on the record produced in step 2. It effectively reuses the
implementation of step 2. If there is no OUTREC, the output
record is set to the record produced in step 2.

If there is no OUTFIL, the building of the model stops. An
example of this is Figure 4, which yields a model that can be
described by considering Figure 5. There are two entry points
in this graph of objects: the list of keys as built in step 3, and
the final record. We can see in Figure 5 that the keys refer
to one concatenation Cc1 that, in turn, refers to the fields
F1, F2 and F5. The output record refers to F1 through F4,
completing the graph.

5) Outfil: For each file stream defined in OUTFIL, the
builder constructs an include condition as in step 1, if any,
and an outrec record as in step 4, if any. The logic for this
effectively reuses the implementation of these respective steps,
each of them taking as input record the record of step 4.

C. Code Generator

The role of the Code Generator is to serialize the graph of
objects that is constructed by the model builder, producing a
SyncSort sort program.

Fundamentally, each object in the graph knows how to seri-
alize itself as a SyncSort representation on a stream of strings.
SyncSort constructs that are named, such as fields, conditions
and computed values, can serialize themselves in two different
ways. Firstly a definition and secondly a reference. When these
objects are created by the model builder, their name is left
empty. The first time that their reference is requested they
will first serialize their definition, giving themselves a unique
name, before returning their name. Serialization then amounts
to a traversal of the graph, as implemented by these constructs.

The code generator produces a program by traversing the
graph from three different entry points, as we show next.

1) Sort Keys: The first traversal starts with the definition
of the sort keys. It amounts to serializing each key field
by asking each key field for its name. In effect, this is a
post-order traversal of the graph since it triggers each key
field to first serialize its definition. In case the key field is a
calculated value, this causes the expression to be serialized,
typically causing the fields and conditions in the expression
to be serialized. For example, consider Figure 6, which is the
equivalent of Figure 4, as produced by the translator. The first
five lines show the result of code generation for the sort keys.
The fifth line is the specification of the keys, which first caused
the definition of the calculated value Cc4 on the fourth line,

which required the first three lines to define the fields of the
concatenation.

Def_Field F1(1,8).
Def_Field F2(24,2).
Def_Field F3(9,10).
Def_Calc Cc4 F1,F2,F3.
SortKeys Cc4(A).
Def_Output <omitted>.
Def_Field F5(9,15).
Def_Field F6(26,14).
Def_Record F1,F2,F5,F6.

Fig. 6. The equivalent of Figure 4, as produced by the translator.

2) Include: After serializing the sort keys, the include
condition is serialized. It is serialized in post-order in the same
fashion as sort keys are serialized.

3) Output file and Record: Last but not least, the code
generator iterates over the list of output files and serializes
the record that corresponds to the output file. If the output
record is the original input record, no code is produced, since
it would be superfluous to define it. If an output record was
constructed (either through an INREC or OUTREC), this record
is serialized in post-order in the same fashion as before. An
example of this is shown in Figure 6, where the last line defines
the output record. It requires the definition of two new fields
F5 and F6, which are defined in the two preceding lines.

Conclusion: The implementation of the language con-
verter is a three-phase process of a parser, a model builder and
a code generator. The parser creates an AST and the builder
creates a model from it by performing abstract interpretation
of the steps in the DFSORT pipeline. In this model, the
record abstraction is responsible for the creation of field
objects, enabling the mapping of field references to their their
computed value or their location in the original input. The code
generator then performs a post-order traversal of this graph,
starting from three different entry points.

V. THE TRANSLATOR IN PRACTICE

The SyncSort translator is currently being tested by clients,
with its first use in production planned before the end of 2020.
The percentage of files that have been successfully translated
varies per client. In our test corpus of almost 35.000 files we
can translate over 95% of the files successfully. In some client
corpuses we have been able to translate over 97% of the files.
Note that a coverage of over 95% is typically acceptable for
the clients. This is because it can be more cost-effective to
manually translate untranslatable files (to translatable files or
to equivalent SyncSort files) than to pay for support of the
features that are missing in the translator.

However, the fact that a program produces correct output
for a large set of inputs does not necessarily imply that it is
well-engineered. In contrast, what arguably is a good token
of a well-engineered program, is how gracefully changes in
requirements can be handled. We have had two such changes
during development, and we talk about them here.

A. Requirements change: Filename Placeholders

The original concept of the language converter was to keep
the sort programs in the DFSORT language and have the
converter translate on the fly whenever a sort is performed. All
calls to the DFSORT executable would be replaced by a script
that first transforms the programs and then calls SyncSort,
passing it the output of the translation. The downside of
translating on-the-fly is the overhead of the translation. Over
time this will accumulate a significant cost in execution time
and memory, translating to a higher monetary cost for the
server performing the sort. To overcome this issue a client
requested to do an offline translation: translate DFSORT sort
programs to SyncSort sort programs that are kept for later
execution. The outputs, however, need to be templates because
parts of the program may change between sort executions.
These parts are placeholders in the template. Then, instead of
running the language converter on-the-fly before each sort,
a preprocessor would replace the placeholders as needed,
which is computationally much less intensive. Placeholders
are needed as, for example, the sort may be part of a larger
batch process where input and output files can be created by
the batch, and hence their path differs between runs.

Generating output with such templates needs for all sort
steps to also execute, since the output of one sort process
can be the input of a next sort process. Hence, the translation
must be integrated into a ‘normal’ translation. This turns out
to be quite straightforward requiring only two changes to
the converter. Firstly, all entities in the model that need to
produce template output check the ‘template mode’ flag and,
if set, produce output with placeholders as needed. Secondly,
if ‘template mode’ is enabled an extra code generation pass
is performed after normal code generation: the code generator
resets the names of all named constructs (see IV-C) and per-
forms generation again. This produces the additional template
output.

B. Requirements change: New SyncSort Syntax

With a target language being a DSL for a product that exists
for more than 40 years on the mainframe and 15 years on
contemporary platforms, an arguably reasonable expectation
would be for the language to be quite stable. This is however
not the case. A request was made by a client to also provide
support for a new Syncsort DSL, called DTL. The main reason
for this was DTL’s ability to allow the sort to run more
efficiently in some cases. Unfortunately, DTL is not backward
compatible with the old language and furthermore does not
provide support for a number of features available in the old
language, e.g. reporting.

Fortunately, a study of DTL revealed that the fundamental
underlying concepts remain the same (if they are supported by
DTL). The most drastic difference in DTL is that fields can no
longer be defined in separate Def_Field statements. Instead
they should be aggregated in one Def_Layout statement.
Therefore the implementation of a DTL code generator is
sufficient to allow us to produce sort programs in the DTL
syntax. Furthermore, since the SyncSort executable still has

support for the old syntax, when producing DTL output fails
because of lack of support in DTL, we can fall back on the
code generator for the old syntax to generate a program.

The DTL code generator differs from the code generator
for the older syntax in two ways: firstly all entities that have
a different concrete syntax in DTL serialize them in the DTL
syntax when needed. Secondly, recall that by traversing the
graph the code generator forces the different fields to serialize
definitions for themselves when they are first referred (see
IV-C). Instead, the DTL code generator collects all these
definitions and then adds the aggregate definition when the
graph has been fully traversed.

VI. CONCLUSION

In this paper we reported on the design and implemen-
tation of the Raincode Labs language converter from the
DFSORT DSL to the SyncSort DSL. As far as we know, it
is the only translator for this domain, and the first time the
design and implementation of an industrial language converter
is published in scientific literature.

The language converter is a three-phase process of a parser,
a model builder and a code generator. The model builder
performs abstract interpretation to recreate the DFSORT pro-
cessing pipeline and key to this recreation is the responsibility
of record objects for the creation of field objects. We have
shown how following the pipeline in the construction process
allows for significant reuse in the translator, and how the model
permits straightforward implementation of change requests for
different kinds of output. In our experience, it is this design
that made implementing the language converter possible.

REFERENCES

[1] “DFSORT product documentation,” IBM Corporation. [Online].
Available: http://www.ibm.com/storage/dfsort

[2] A. van Deursen, P. Klint, and J. Visser, “Domain-specific languages:
An annotated bibliography,” ACM SIGPLAN Notices, vol. 35, no. 6, pp.
26–36, 2000. [Online]. Available: https://doi.org/10.1145/352029.352035

[3] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, pp. 316–
344, 2005. [Online]. Available: https://doi.org/10.1145/1118890.1118892

[4] A. A. Terekhov and C. Verhoef, “The realities of language conversions,”
IEEE Software, vol. 17, no. 6, pp. 111–124, 2000. [Online]. Available:
https://doi.org/10.1109/52.895180

[5] J. Fabry, T. Dinkelaker, J. Noyé, and É. Tanter, “A taxonomy of domain-
specific aspect languages,” ACM Comput. Surv., vol. 47, no. 3, pp.
40:1–40:44, 2015. [Online]. Available: https://doi.org/10.1145/2685028

[6] z/OS DFSORT Application Programming Guide, IBM Corporation,
Poughkeepsie, NY, USA, 2019.

[7] L. Johnson, “Oral history of Duane Whitlow,” Computer History Museum,
Tech. Rep. X5710.2010, 1998.

[8] B. Ford, “Parsing expression grammars: a recognition-based syntactic
foundation,” in Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL
2004, Venice, Italy, January 14-16, 2004, N. D. Jones and
X. Leroy, Eds. ACM, 2004, pp. 111–122. [Online]. Available:
https://doi.org/10.1145/964001.964011

[9] ——, “Packrat parsing: : simple, powerful, lazy, linear time,
functional pearl,” in Proceedings of the Seventh ACM SIGPLAN
International Conference on Functional Programming (ICFP ’02),
Pittsburgh, Pennsylvania, USA, October 4-6, 2002, M. Wand and
S. L. P. Jones, Eds. ACM, 2002, pp. 36–47. [Online]. Available:
https://doi.org/10.1145/581478.581483

