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Abstract—To be able to modularize crosscutting concerns,
aspects introduce new programming language features, often
in a new language, with a specific syntax. These new features
lead to new needs for source code analysis tools, resulting in
the requirement for a general-purpose aspectual source code
analysis tool. Ignoring this requirement has led to a nontrivial
duplication of effort in the aspect-oriented software development
community. This is because all code analysis efforts that we
are aware of have either built ad-hoc analysis tools or were
performed manually. In this paper we present GASR: a source
code analysis tool in the tradition of logic program querying
that reasons over ASPECTJ source code. By hooking into the
IDE plugins for ASPECTJ, GASR provides a library of predicates
that can be used to query aspectual source code. We demonstrate
the use of GASR by automating the recognition of a number of
previously identified aspectual source code assumptions. We then
detect assumption instances on two well-known case studies that
were manually investigated in the earlier work. In addition to
finding the already known aspect assumptions, GASR encounters
assumption instances that were overlooked before.

Keywords—Aspect Oriented Programming, Logic Program
Querying, Aspectual Assumptions

I. INTRODUCTION

Aspects are a means to modularize cross-cutting concerns:
concerns whose implementation is spread throughout different
modules of the system under construction. Aspects are a new
kind of module that encapsulate, in addition to their behavior,
when this behavior needs to be invoked, i.e., also define a kind
of implicit invocation of their behavior.

To perform Aspect-Oriented Programming, new program-
ming languages have been proposed that are usually extensions
of existing OOP languages. These extensions then consist of
language features that allow for the specification of these
new modules, and most importantly their implicit invocation
conditions, known as pointcuts. As a result of this, existing
source code analysis tools for these OOP languages are inca-
pable to correctly treat these aspects in their reasoning. Firstly
existing analyses may be incorrect and, secondly, analyses that
specifically consider the aspectual properties of the source code
are absent. Considering the first case: as aspects modify the
control flow of the program, source code analysis should take
these changes into account when reasoning over properties
of the code, where appropriate. As for the second case, the
extensions made by aspect languages are usually nontrivial.
This creates an entirely new class of analyses that take into

account the aspectual nature of the code and how these features
are used and interact (e.g., [1], [2], [3], [4], [5], [6], [7],
[8], [9]). To the best of our knowledge, all of these kinds
of analyses have been made on an ad-hoc basis, customized
specifically to the analysis task being performed. As a result
there has been a considerable duplication in development effort
of these analyses. Moreover these are not customizable to the
actual software under analysis, e.g., to automatically remove
one kind of known false positives from the results.

We state that there is a need for a general-purpose source
code reasoner for aspects. It should ease the definition of
multiple kinds of source-code analysis over aspect-oriented
source code and also be tailorable to the task at hand by the
user. To address this need we built GASR and we present it in
this paper.

This paper contains the following contributions:

• It argues for the need for a general-purpose source
code analysis tool that is aware of aspects.

• It presents the logic program querying tool GASR, the
first such analysis tool, and discusses its implementa-
tion along with its library of logical predicates.

• It shows how GASR can be used to automatically
verify a subset of previously published inter-aspect
assumptions [10], implementing part of the future
work of that publication.

The structure of this text is as follows: next we provide
the problem statement of the paper, arguing for the need for
GASR. In Section III we give an overview of related work,
showing that existing analyses have been ad-hoc. We then
present GASR in Section IV, discussing its implementation
and a selection of its library of logical predicates. This is
followed, in Section V, by an illustration of the usefulness
of GASR by realizing detection of inter-aspect assumptions, as
previously identified in [10]. The paper then briefly discusses
threats to validity in Section VI before providing conclusions
and avenues for possible future work.

II. PROBLEM STATEMENT

To enable the modular specification of crosscutting con-
cerns, aspects encapsulate both their behavior as well as the
invocation conditions for this behavior. This gives rise to new
language features and terminology, which in turn requires new
features for a source code reasoner.978-1-4673-5739-5/13/$31.00 c© 2013 IEEE



A. Terminology and Language Features

Broadly put, an aspect contains two parts: its behavior,
specified in a number of advice, and the invocation specifica-
tions for this advice, denoted in pointcuts. Advice are linked to
pointcuts, and whenever a pointcut matches the linked advice
is invoked. Conceptually, to match pointcuts each execution
step of the software is reified as a join point and pointcuts
are predicates over join points. The work of performing join
point reificiation, passing them to all pointcuts, and running the
associated advice if a pointcut matches is performed by the
aspect weaver. Implementation strategies for aspect weavers
vary from source-code preprocessing to aspect-aware virtual
machines. A last item of terminology is the join point shadow
for a join point: the piece of source code whose execution
produced that join point.

We now show different language features that the proto-
typical aspect-oriented language places at the programmers’
disposal, as an indication towards the possible complexity of
aspectual source code. The example language is ASPECTJ [11],
arguably the best-known and most-used aspect language. AS-
PECTJ is an extension of Java that introduces aspect features
using a specific syntax. We now briefly touch on the different
aspectual language features of ASPECTJ, starting with aspects:
Aspect declarations are similar to class declarations and are de-
clared using the aspect keyword. Aspects can contain methods
and fields, but only one zero-argument constructor. The latter
is because aspects cannot be manually instantiated, the weaver
performs this when needed (typically aspects are singletons).
Aspects may be abstract, extend classes and abstract aspects,
and implement interfaces.

Pointcuts in ASPECTJ are a new sort of member declaration
that use the pointcut keyword, and have the standard visibility
and inheritance semantics. Pointcuts have a body, unless they
are declared as abstract. Abstract pointcuts can only be con-
tained in an abstract aspect. The body of a pointcut is a logical
combination of pointcut expressions or a primitive pointcut
expression. Primitive pointcut expressions firstly specify the
kind of pointcut: an execution of a method, a call of a method,
getting or setting a field, and so on. Secondly, they provide a
pattern that may match on that kind of execution step of the
software, e.g., a signature of a method. In this pattern wildcards
may be used to generalize over names as well as types.

An example of a quite drastic pointcut that uses a pattern
is below: a pointcut named allFoo that matches on the method
calls of all methods of the class Foo, irrespective of the return
type and number of parameters.

1public pointcut allFoo() : call(* Foo.*(..));

Advice are similar to methods in that they declare a body
of code and have parameters. They differ firstly in that they
do not have a name, but instead declare that they need to be
invoked before, after, or instead of (around) the join point.
They link to a pointcut by providing the pointcut name, or a
pointcut body (known as using an anonymous pointcut).

Lastly, aspects may also modify the type hierarchy and add
inter-type declarations. In the former the aspect declares that
given classes or aspects extend or implement other classes or
interfaces. In the latter the aspect adds fields or methods to
other classes, similar to what is allowed in Open Classes [12].

B. Classic Example: Aspect Reentrancy

As a first, brief, example of a concrete need for aspect-
specific source code reasoning we now present a classic
example of an ASPECTJ antipattern regarding reentrancy. We
include it here as it is important, yet simple enough to be
briefly explained. Consider the following as a token of its
importance: the ASPECTJ documentation ‘pitfalls’ section1

contains just this one example, and no other.

1aspect Boom {
2 before(): call(* *(..)) {
3 System.out.println("before"); }}

The aspect above declares one advice, with a pointcut
body that matches on all method calls in the program. The
behavior of the advice is to make a method call to the Sys-
tem.out.println method. The pointcut matches on all method
calls, hence also this call, hence before the method is called
the advice body is again executed, leading to an infinite loop.

The antipattern in the above example can be easily detected
by an aspect-aware source code reasoner: there is a possibility
for infinite application of an advice when the join point
shadows of the associated pointcut are contained in this advice.

C. Problem: A New Reasoning Need

If we consider aspects as simply a means to achieve
behavior subject to implicit invocation with implicit announce-
ment [13], it may seem that the need for source code reasoning
over aspects is simple. Since in this view aspects essentially
are for altering the control flow of the running application,
existing source code reasoners just need to be extended to
take this control flow into account.

Aspects however go beyond the above as they introduce
multiple aspectual language features that interact with the
non-aspectual language features as well as among themselves.
An example of the former is that aspects may change the
class hierarchy of the program. As an example of the latter
consider a pointcut named abstractpc, defined as an abstract
pointcut in a root aspect Root and also used by an advice
of Root. abstractpc may be concretized in a child-aspect
Child of Root. It may also be concretized again in an aspect
Grandchild that is a child of Child, i.e., a grandchild of
Root. The definition of the actual pointcut that is used for
the advice in Root is the lowest in the hierarchy [10], i.e., the
re-concretization in Grandchild.

As a result, in addition to the classic example of Sect. II-B,
many possible issues in aspectual code have been separately
identified. We provide three examples. First are aspects as-
suming specific properties of other aspects to be present [10],
which we will discuss in more detail in Section V. Second
is the problem of pointcuts that are slightly or subtly in-
correct [1], as a result these fail to match the intended join
points, or match unintended join points. Third is the fragility
of pointcuts when the software evolves [3], [4], in this case
pointcuts end up being broken due to changes in the program
that were made due to its evolution. We find it remarkable that
for these three examples no single source code reasoner can
yet be used to detect all of these issues such that they can be
revealed using, e.g., a bad smells detection tool.

1http://www.eclipse.org/aspectj/doc/next/progguide/pitfalls.html



Also, multiple aspectual design patterns have been pre-
sented [14], [15], yet no mining of these patterns with a source
code reasoner have been documented. A well-known example
is the Wormhole [15]: an aspect intervenes in one part of
the control flow to store the value of a specific parameter or
variable, and in a second part retrieves this value and injects it
back in the control flow. It is as if the value passed through a
wormhole that lies between both parts. Given that a pattern is
a template, there may be various variations on this template,
and various ways in which these are instantiated. Hence an
analysis tool to discover such patterns or to verify their correct
use, e.g., if the stored value is modified before it is injected,
would need to be tailorable to the case at hand.

From the above, we conclude that there is a need for
multiple kinds of source-code analysis over aspect-oriented
software that are general enough such that they can be used
for multiple kinds of analysis and moreover are adaptable such
that they can be tailored to the task at hand. In other words, we
need a general-purpose source code reasoner for aspects. With
this reasoner we would then be able to, e.g., automatically
identify aspectual assumptions in code, write a bad smells tool
that can reveal errors as in Sect. II-B, or detect incorrect use
of the Wormhole pattern.

III. RELATED WORK

To the best of our knowledge, there is no general-purpose
aspect source code analysis tool. Directly related work consists
of specific ad-hoc analyses made, and indirectly related is work
on code comprehension of aspectual source code.

Getting pointcuts correct can be a hard task [1], and as a
result of this, pointcuts have been the focus of various tracks
of research that include code reasoning. Notable early work
is on PointcutDoctor [1], a tool that provides special-purpose
reasoning over pointcuts to establish near matches of pointcuts
as well as the reasons why a given shadow matches, or does
not match a specific pointcut. Related to this is the fragility
of pointcuts, as mentioned above. The most recent work is
on pointcut rejuvenation [2]. New code that is added as the
software evolves may also need to be captured by the existing
pointcuts, i.e., they need to be changed. A custom analysis
is developed that suggests changes to pointcuts when needed.
Earlier work in this area [3], [4] also used custom analyses.

Yet reasoning about aspectual source code is not limited to
pointcuts only. For example, ITDVisualizer [5] is a tool that
supplies an analysis of the impact of intertype declarations.
It shows how they impact method lookup, and identifies how
code entities are shadowed by intertype declarations. XFind-
Bugs [6] is a tool that uses static analysis to find potential
bugs in aspectual source code. It defines a catalog of multiple
bug patterns for aspect-oriented features, and implements a
set of bug detectors on top of the FindBugs analysis frame-
work2. Last but not least, the work on the Ajana analysis
framework [7] for source-code-level interprocedural dataflow
analysis yields a control- and data-flow program representation
for aspectual source code. Considering this representation it
proposes an object effect analysis and a dependency analysis.
Again all of the above tools use a custom reasoner to provide
the analysis.

2http://findbugs.sourceforge.net/

Complementary to the above, code comprehension tools
for aspectual source code also include some form of ad-hoc
reasoning to be able to display their specific comprehension
aids. We highlight two such tools: the AJDT and AspectMaps.

The AspectJ Development Toolkit (AJDT) [8] is arguably
the most mature, feature-rich and best known tool suite for
AOP. It consists of a set of plug-ins to the Eclipse IDE that
add code comprehension features, amongst others. It provides
a “Cross References” view that, when editing an aspect or
class, shows a summary of the join point shadows or advice
that apply, respectively. In the code editor, at each join point
shadow, gutter markers are present that reveal information
about the advice. AJDT also provides for a visualization of
the source code, but this feature has been superseded by
other aspectual visualizations, the most recent of which is
AspectMaps [9], [16]. AspectMaps is a visualization tool
that shows where in the code aspects apply. Of all aspect
visualizations, AspectMaps shows the most information about
the source code [9]. Moreover, by using a selective structural
zoom, it ensures a scalable visualization from package level
all the way down to method level. At this finest granularity
it shows exactly where advice apply, the order of advice
execution at one shadow and whether the advice has any run-
time invocation conditions.

A common thread in all the above work is that the required
source code analysis is provided ad-hoc, entailing a signifi-
cant duplication of effort. If a general-purpose aspect-oriented
source code reasoner would have existed, this duplication of
effort might have been avoided.

IV. QUERYING ASPECTJ PROGRAMS USING GASR

We introduce GASR (General-purpose Aspectual Source
code Reasoner) as a tool for answering user-specified questions
about the structure as well as the behavior of an aspect-oriented
program. Examples range from “which pointcut definitons are
overridden in a subtype?” over “which pointcuts have a join
point shadow in an advice?” to “can these advices be executed
consecutively?”. Such questions have to be specified as a logic
query of which the conditions quantify over the program’s
source code. The expressiveness of the logic paradigm has
been shown to facilitate specifying the characteristics of sought
after code. Once specified in a logic program query, retrieving
source code elements that exhibit these characteristics is left to
the querying tool. This relieves users of having to implement
an imperative search themselves. As such, GASR is a tool in the
tradition of logic program querying. Other examples include
CODEQUEST [17], PQL [18] and SOUL [19].

GASR owes its query language to the CORE.LOGIC3 port
to Clojure of MINIKANREN [20], and its IDE integration to
the EKEKO4 Eclipse plugin. The latter enables launching and
scheduling program queries, as well as inspecting the solutions
to a query and associating warning markers with them —
actually building upon our earlier Eclipse plugin suite for
program querying [19], [21].

3https://github.com/clojure/core.logic
4https://github.com/cderoove/damp.ekeko/



A. Launching Program Queries

Queries can be launched from a read-eval-print loop using
the ekeko* special form. It takes a vector of logic variables,
each denoted by a starting question mark, as its first argument
and this is then followed by a sequence of logic goals:

1(ekeko* [?x ?y]
2 (contains [1 2] ?x)
3 (contains [3 4] ?y))

The binary predicate contains/2, used by both goals, holds
if its first argument is a collection that contains the second
argument. Solutions to a query consist of the different bindings
for its variables such that all logic goals succeed. Internally,
the logic engine performs an exploration of all possible results,
using backtracking to yield the different bindings for logic vari-
ables. The four solutions to the above query consist of bindings
[?x ?y] such that ?x is an element of vector [1 2] and ?y is
an element of vector [3 4]: ([1 3] [1 4] [2 3] [2 4]).

Logic variables have to be introduced explicitly into a
lexical scope. Above, the ekeko* special form introduced two
variables into the scope of its logic conditions. Additional
variables can be introduced through the fresh special form:

1(ekeko* [?x]
2 (differs ?x 4)
3 (fresh [?y]
4 (equals ?y ?x)
5 (contains [3 4] ?y)))

The above query has but one solution: ([3]). Indeed, 3 is the
only binding for ?x such that all goals suceed. The differs/2

goal on line 2 imposes a disequality constraint such that any
binding for ?x has to differ from 4. The equals/2 goal on line
4 requires ?x and the newly introduced ?y to unify.

Finally, new predicates can be defined as regular Clojure
functions that return a logic goal. As such, the aforementioned
special forms give rise to an embedding of logic programming
in a functional language.

1(defn contains+ [?c ?e]
2 (conde [(contains ?c ?e)]
3 [(fresh [?x]
4 (contains ?c ?x)
5 (contains+ ?x ?e)]))))

Here, the special form conde returns a goal that is the
disjunction of one or more goals. The newly defined predicate
contains+ therefore succeeds for ?e that reside at an arbitrary
depth within a collection ?c.

Note that an idiomatic Prolog definition of the above would
consist of two rules that define the same predicate: one for
the base case and one for the recursive case, thus creating
an implicit choice point. By relying on function definition, the
above implementation has to make such choice points explicit.

B. The Predicate Library of GASR

To enable querying ASPECTJ programs, we have developed
a library of predicates that can be used in EKEKO queries.
For instance, solutions to the following query correspond
to instances of the aspect reentrancy example described in
Section II-B:

1(ekeko* [?aspect ?advice]
2 (fresh [?shadow]
3 (aspect-advice ?aspect ?advice)
4 (advice-shadow ?advice ?shadow)
5 (shadow-enclosing ?shadow ?advice)))

Upon backtracking, the goal on line 3 successively binds
?advice with each advice of an aspect ?aspect —which is
also bound successively to each aspect known to the ASPECTJ
weaver. The goal on line 4 binds ?shadow to one of the join
point shadows of this advice, while the goal on line 5 requires
?advice to unify with the immediately enclosing source code
entity of ?shadow. Hence, ?advice will be bound to an advice
that advices itself, i.e., a possible infinite loop. Note that, by
convention, the names of predicates that reify an n-ary relation
consist of n components separated by a -, each describing an
element of the relation. Also, vertical bars | separate words
within the description of a single component.

The predicates used in the above query concern the
structure of the woven ASPECTJ program. In contrast, the
predicates below concern possible behavior of the program at
run-time. Its solutions correspond to possible instances of the
wormhole pattern described in Section II-C:

1(ekeko* [?aspect ?advice|entry ?advice|exit ?field]
2 (aspect-advice ?aspect ?advice|entry)
3 (type-field ?aspect ?field)
4 (advice|writes-field ?advice|entry ?field)
5 (differs ?advice|exit ?advice|entry)
6 (aspect-advice ?aspect ?advice|exit)
7 (advice|reads-field ?advice|exit ?field)
8 (advice-reachable|advice ?advice|entry ?advice|exit))

The first goal binds ?advice|entry to an advice that will
serve as the entry point of the wormhole ?aspect. Lines 3–4
therefore ensure that this advice writes to a ?field defined
in the same aspect. Lines 5–6 require this aspect to feature a
different ?advice|exit that will serve as the exit point of the
wormhole. As such, the exit advice has to read from the field
written to by the entry advice (line 7). Note how multiple
occurrences of a logic variable link these goals together.
The final goal conservatively ensures that there might be an
execution of the woven program in which ?advice|exit is
executed after advice|entry.

We have developed a comprehensive library of logic predi-
cates, which we do not discuss in full here. Instead, Table I and
Table II list representative predicates that reify structural resp.
behavioral relations between ASPECTJ source code entities.
We refer to the online documentation5 for an overview of
the complete predicate library. The remainder of this section
discusses the highlights of its implementation.

1) Predicates Reifying Structural Relations: The predicates
listed in Table I reify the structural relations between the source
code entities of an ASPECTJ program (e.g., types and their
members, aspects and their pointcut definitions, advices and
their shadows). To this end, their implementation consults the
domain model maintained by the ASPECTJ weaver.

EKEKO supports calling out to Java from within a logic
goal. This obviates the need to convert the weaver’s domain
objects to logic facts. Instead, they are kept as instances

5https://github.com/cderoove/damp.ekeko.aspectj



Predicate Reified Relation
(type ?type) Of all types known to the weaver (i.e., aspects, classes, interfaces, enums, etc).
(type-declaredsuper ?type ?super) Between a type and its direct declared superclass or superaspect.
(type-declaredinterface ?type ?interface) Between a type and one of the interfaces it declares to be implementing or extending directly.
(type-super+ ?type ?super) Between a type and one of its direct or indirect super types (classes, aspects as well as interfaces),

including those that stem from an intertype declaration.
(type-method ?type ?method) Between a type and one of its declared methods.
(type-method+ ?type ?method) Between a type and one of its declared or inherited methods. Does not include methods stemming

from intertype declarations.
(aspect ?aspect) Of all aspects known to the weaver. Subrelation of type/2.
(aspect-pointcutdefinition ?aspect ?pointcutdefinition) Between an aspect and one of its declared pointcut definitions.
(aspect-advice ?aspect ?advice) Between an aspect and one of its declared advice.
(aspect-intertype ?aspect ?intertype) Between an aspect and one of its intertype member declarations.
(aspect-declare ?aspect ?declare) Between an aspect and one of its declare declarations (e.g., parents, precedence).
(pointcutdefinition-pointcut ?pointcutdefinition ?pointcut) Between a non-abstract pointcut definition and its pointcut.
(pointcutdefinition-name ?pointcutdefinition ?name) Between a pointcut definition and its name.
(pointcutdefinition|abstract ?pointcutdefinition) Of abstract pointcut definitions. Sub-relation of pointcutdefinition/1.
(advice|before ?advice) Of before advices. Sub-relation of advice/1.
(advice-pointcut ?advice ?pointcut) Between an advice and its pointcut. The latter either an anonymous pointcut, or a pointcut definition.
(advice-pointcutdefinition ?advice ?pointcutdefinition) Between an advice and the concrete pointcutdefinition its name resolves to (i.e., overrides of possibly

abstract pointcutdefinitions are taken into account).
(advice-shadow ?advice ?shadow) Between an advice and one of its join point shadows.
(shadow-enclosing ?shadow ?enclosing) Between a shadow and its immediately enclosing entity or the entity itself for entity shadows. This

entity can be a class, aspect, enum, method, intertype method, advice, etc . . .
(shadow-ancesor|type ?shadow ?type) Between a shadow and its first enclosing type entity (e.g., aspect, class, enum).
(intertype-member-target ?intertype ?member ?type) Between an intertype declaration, the member (i.e., field, method or constructor) it declares, and the

type to which this member is added.
(declare|parents ?declare) Of declare parents declarations. Subrelation of declare/1.
(declare|parents-target-parent ?declare ?target ?parent) Between a declare parents declaration, one of the target types matching its pattern and the

corresponding super type.
(declare|precedence ?declare) Of declare precedence declarations. Subrelation of declare/1.
(aspect|dominates-aspect ?daspect ?saspect) Of actual domination relations between aspects that result from declare precedence declarations.

TABLE I. REPRESENTATIVE PREDICATES CONCERNING STRUCTURE.

Predicate Reified Relation
(advice|reads-field ?advice ?field) Between an advice and one of the fields it reads from.
(advice|writes-field ?advice ?field) Between an advice and one of the fields it writes to.
(advice-reachable|advice ?advice1 ?advice2) Between an advice and another advice such that the latter may be executed after the former. Concretely, this is the

relation of two successive advices on a path through the inter-procedural control flow graph of the woven program.
(field-soot|field ?field ?soot) Between a field and the SOOT field that represents its implementation.
(advice-soot|method ?advice ?soot) Between an advice and the SOOT method that represents its implementation.
(intertype|method-soot|method ?itmethod ?soot) Between a method declared by an intertype declaration and the SOOT method that represents its implementation.
(soot|method-soot|unit ?method ?unit) Between a SOOT method and one of the units in its body. These correspond to instructions in SOOT’s JIMPLE

intermediate representation [22] of the woven program.
(soot|unit|reads-soot|valuebox ?unit ?value) Between a SOOT unit and one of the values (e.g., parameters, field references, expressions. . . ) it reads from.
(soot|unit|writes-soot|valuebox ?unit ?value) Between a SOOT unit and one of the values it writes to.
(icfg|main-start ?icfg ?icfg|start) Between the inter-procedural control flow graph of the woven program and its starting node.
(icfgnode-unit ?node ?unit) Between a node of the inter-procedural control flow graph and a SOOT unit.
(icfgnode-method ?node ?method) Between a node of the inter-procedural control flow graph and the SOOT method in which it resides.
(icfgnode-stack?node ?stack) Between a node of the inter-procedural control flow graph and the (finite) configuration of the call stack at the

time it was encountered during a traversal.
(path ?icfg ?start ?end [v1...vn] q1 . . . qn) Of inter-procedural control flow graphs ?icfg in which there exists a path from ?start till ?end that is of the

form described by the regular path expression q1. . .qn. Here q is one of the regular path primitives provided by
the QWAL library [23]: q=> skips a single node, q=>* skips zero or more nodes, and q=>+ skips one or more nodes
on the path. Primitive qcurrent evaluates logic goals against the current node on the path, possibly involving one
of the v1...vn logic variables.

TABLE II. REPRESENTATIVE PREDICATES CONCERNING BEHAVIOR.

of various org.aspectj.weaver classes. The binary predicate
aspect-pointcutdefinition/2, e.g., is as follows:

1(defn aspect-pointcutdefinition [?aspect ?pcdef]
2 (fresh [?pcdefs]
3 (aspect ?aspect)
4 (equals ?pcdefs (.getDeclaredPointcuts ?aspect))
5 (contains ?pcdefs ?pcdef)))

The predicate reifies the relation between an aspect and one of
its own, non-inherited pointcut definitions. The goal on line 3
ensures that ?aspect is bound to the weaver’s representation
of an aspect (i.e., an instance of ResolvedType). This enables
the goal on line 4 to unify ?pcdefs with the result returned by
method getDeclaredPointcuts() on the binding of ?aspect.
Upon backtracking, the goal on line 5 will therefore succes-
sively unify ?pcdef with each of the elements of the returned
collection of ResolvedPointcutDefinition instances.

2) Predicates Reifying Behavioral Relations: The pred-
icates listed in Table II reify control flow and data flow
relations between the source code entities of the woven AS-
PECTJ program. While the former concerns the order in which
instructions may be executed at run-time, the latter concerns
the values these instructions may operate upon.

The predicates at the top of Table II reify behavioral
relations between elements that stem from the weaver’s domain
model. These can be combined with the structural predicates
of Table I. For example, solutions to the following consist of
an advice and a type of which the advice modifies a field:

1(ekeko* [?advice ?type]
2 (fresh [?field]
3 (advice|writes-field ?advice ?field)
4 (type-field ?type ?field)))



These predicates are implemented themselves in terms of
predicates that quantify over static analysis results provided
by the SOOT [22] analysis framework (third row in Table II)
and predicates that link both sources of information together
(second row in Table II). For instance, the binary predicate
advice|writes-field/2 is implemented as follows:

1(defn advice|writes-field [?advice ?field]
2 (fresh [?soot|method ?soot|field ?soot|unit
3 ?vbox ?value]
4 (advice-soot|method ?advice ?soot|method)
5 (field-soot|field ?field ?soot|field)
6 (soot|method-soot|unit ?soot|method ?soot|unit)
7 (soot|unit|writes-soot|valuebox ?soot|unit ?vbox)
8 (soot|valuebox-soot|value ?vbox ?value)
9 (succeeds (instance? soot.jimple.FieldRef ?value))

10 (equals ?soot|field (.getField ?value))))

The goal on line 4 retrieves SOOT’s representation of the
method that represents the weaver’s advice ?advice in the wo-
ven program. The goal on line 5 does the same for the weaver’s
field ?field. The remaining goals use predicates that reify
relations between SOOT elements only. Upon backtracking,
the goal on line 6 will successively unify ?soot|unit with one
of the units in the body of ?soot|method. These correspond to
instructions in SOOT’s JIMPLE intermediate representation [22]
of the woven program. Lines 7–10 ensure that this unit writes
to the SOOT field ?soot|field that represents the weaver’s
field ?field in the woven program. Note that the final goal
calls out to SOOT to resolve a field reference to the referenced
field —possible because we forego a conversion to logic facts.

Predicates such as advice-reachable|advice/2, which rei-
fies the relation between an advice and another advice such
that the latter may be executed after the former, require more
detailed information about the woven program. They are hence
implemented in terms of predicates that quantify over the paths
through an inter-procedural control flow graph of the woven
program (fourth row in Table II). We compute this graph by
linking the intra-procedural control flow graphs of callers and
callees using the results of SOOT’s points-to analysis, i.e.,
the demand-driven, context-sensitive version by Sridharan et
al. [24]. We refer to the online documentation of EKEKO
for behavioral predicates that reify may-alias and must-alias
dataflow relations between SOOT values based on this analysis.

To summarize: the possible methods an invocation may
resolve to are determined using a compile-time approximation
of the dynamic type of its receiver, i.e., the types of the objects
in its points-to set, rather than its static type — which is more
precise. Note that multiple call sites result in control flow
splits at the exit points of callees for link-based whole-program
graphs. Our graph traversal predicates therefore take care not
to follow unrealizable paths, without endangering termination
(i.e., a finite call stack ensures that successors of a method’s
exit node agree with an earlier method invocation).

Of the graph traversal predicates at the bottom of Table II,
path/n is of special interest as it embodies the implementation
of parametric regular path expressions [25], [26] in EKEKO
(which we have applied in earlier work to query the history of
versioned software [23]). Regular path expressions are an intu-
itive formalism for quantifying over the paths through a graph.
They are akin to regular expressions, except that they consist
of logic goals to which regular expression operators have been
applied. Rather than matching a sequence of characters in a

string, they match paths through a graph along which their
logic goals succeed. This is illustrated by the implementation
of predicate advice-reachable|advice/2 below:

1(defn advice-reachable|advice [?advice1 ?advice2]
2 (fresh [?s|method1 ?s|method2
3 ?icfg ?icfg|start ?icfg|end]
4 (advice-soot|method ?advice1 ?s|method1)
5 (differs ?advice1 ?advice2)
6 (advice-soot|method ?advice2 ?s|method2)
7 (icfg|main-start ?icfg ?icfg|start)
8 (path ?icfg ?icfg|start ?icfg|end []
9 (q=>*)

10 (qcurrent [?n]
11 (icfgnode-method ?n ?s|method1))
12 (q=>+)
13 (qcurrent [?n]
14 (icfgnode-method n ?s|method2)))))

The goals on lines 4–6 of quantify over two distinct advices
and their corresponding SOOT methods in the woven program.
Line 7 unifies ?icfg with an inter-procedural control flow
graph that starts at the main() method of the woven program.
The goal on line 8 succeeds if there is a path through this
graph from node ?icfg|start to ?icfg|end that is of the form
described by the regular path expression in its body: zero or
more non-distinct nodes (i.e., nodes against which no logic
goals have to succeed) (line 9), followed by one node that
resides in the SOOT method corresponding to ?advice1 (lines
10-11), followed in turn by one or more non-distinct nodes
(line 12), concluded by a node that resides in the SOOT method
corresponding to ?advice2 (line 13).

Note that a similar regular path expression can be used to
warn about possibly incorrect implementations of the worm-
hole pattern described in Section II-C. These are characterized
by an execution path on which the wormholed field is written
to inbetween the entry and exit advice.

V. DETECTING ASPECT ASSUMPTIONS WITH GASR

As an illustration of the usefulness of GASR we now show
how it can be used to implement detection of developers’
assumptions about aspect usage, effectively extending the
“Aspect Assumptions” work of Zschaler and Rashid [10].
For brevity, in the rest of this section we will refer to this
work as AA. For AA, Zschaler and Rashid have studied three
nontrivial aspectual systems to discover the assumptions made
by the different modules about the functionality, presence and
implementation of other modules. The authors assert that as-
sumptions that aspects make about the system are “particularly
critical” [10] because of the cross-cutting nature of aspects as
well as their implicit invocation. They start a catalogue of such
assumption types, based on the assumptions discovered in their
case studies. To discover these, their investigation consisted of
manual inspection of the source code and developer interviews.

AA also proposes a followup that, to the best of our
knowledge, has not yet been performed. It consists in codi-
fying the assumptions such that these can be “used to semi-
automatically identify assumptions in other aspect code” [10].
This would allow, on the one hand for implicit assumptions
to be elicited from the source code, and on the other hand for
explicit assumptions to be verified. For the latter, the ideal case
would be “making fully automatic verification a feasible goal
for at least some of the assumption categories” [10]. In this



section we show how GASR can be used to perform exactly
this. We implement elicitation rules for a subset of the aspect
assumptions and run them on two of the three case studies
used in AA6. We consider that providing a complete set of
rules would be a separate contribution and hence out of the
scope of this work.

Concretely, we restrict ourselves to inter-aspect assump-
tions (Sect. 3.1.1 in [10]) and run the experiments on the
HealthWatcher [27] and MobileMedia [28] systems. We im-
plemented analysis rules for all assumptions that can be
sufficiently formalized, or approximated by a heuristic. All
rules were developed on a test-first basis and both the rules and
the test cases are available online7. After running the analyses,
the results were verified for correctness and completeness. This
was achieved by manually inspecting both the source code
as well as the full list of assumption instances published as
additional material of the AA paper8. Our results confirm the
assumption instances listed and, more importantly, provide new
assumption instances that were overseen in AA. The latter
clearly demonstrates the advantages of automatic aspectual
source code reasoning, as provided by GASR.

Due to lack of space, we cannot fully document all the
analyses we created for assumption identification. Instead we
choose to focus here on interesting analyses: those that achieve
fully automatic verification, reveal new assumption instances
and show customizability.

A. Assumptions on concretisation of pointcuts

The first assumption we talk about here was already
mentioned in Sect. II-C: an abstract pointcut that is concretized
in a subclass and re-concretized in one of its subclasses. The
assumption is that in such a case the aspect actually wishes
to preserve existing behavior and hence should not override
already concretised pointcuts. We can use GASR to perform
fully automatic verification of this assumption, yielding a first
step of the followup work proposed in the AA paper. The
following logic rule will reveal violations of the assumption:

1 (defn pointcut-concretized-reconcretized
2 [?pointcut ?cpointcut ?rcpointcut]
3 (all
4 (pointcut-concretizedby ?pointcut ?cpointcut)
5 (pointcut-concretizedby ?cpointcut ?rcpointcut)))

In line 4 of the code above, we find a ?pointcut that is
concretised by a second ?cpointcut, and in line 5 we find a
?rcpointcut that concretises ?cpointcut. Any solutions for
this goal hence consist of a ?pointcut that is concretised by
?cpointcut and reconcretised by ?rcpointcut.

We have queried both example case studies for matches
of this rule and have found none. In other words there are
no cases where this assumption has been violated. This is in
accordance to the results published in AA.

B. Precedence assumptions

ASPECTJ provides for a mechanism to order the execution
of advice when multiple advice apply at a given join point.

6The third system investigated in AA fails to compile due to an ASPECTJ
internal compiler error and hence could not be analysed by us.

7Available at https://github.com/cderoove/damp.ekeko.aspectj
8Available at http://www.steffen-zschaler.de/publications/rivar data/

It consists of precedence relations between different aspects
and advice. This results in a domination order that determines
the execution order of advice. The language contains implicit
precedence rules that determine dominance between the as-
pects in an inheritance tree. Additionally, dominance between
advice of the same aspect is determined by their order in the
source code. The developer may also explicitly declare prece-
dence between different aspects. One precedence assumption
stated in AA is that implicit precedence rules between aspects
are not modified by explicit precedence declarations. GASR
can also be used to provide fully automatic verification of this
assumption, as follows:

1 (defn overridden|imp|precedence [?asp1 ?asp2]
2 (all
3 (aspect|dominates-aspect ?asp2 ?asp1)
4 (aspect|implicitdominates-aspect+ ?asp1 ?asp2)))

Line 3 of the above rule provides bindings for domina-
tion relationships between aspects that have been explicitly
declared, while line 4 succeeds for implicit domination rela-
tionships that are the opposite. The resulting bindings hence
violate the aspect assumption. We have found none in the case
studies, again in accordance to the results found in AA.

C. Inclusion assumptions of aspects

AA describes inclusion assumptions of aspects in general
as “Some aspects require other aspects to be deployed to
function correctly.” This assumption cannot be unambiguously
defined in a code rule. The paper however also identifies a
specific variant: an aspect defines a marker interface, i.e., an
empty interface, and another aspect contains a declare par-
ents statement that adds it as an implemented interface to a
given class. The cases identified in the code studied for AA
are actually a generalization of this: the interface sometimes is
stand-alone, i.e., defined in its own compilation unit. Moreover,
aspects may refer to a sub-interface of this interface. The rules
below successfully identify these assumption instances:

1(defn markerinterface [?interface]
2 (fresh [?member]
3 (interface ?interface)
4 (fails (type-member ?interface ?member))))

5(defn aspect-declareparents|markerinterface
6 [?aspect ?interface]
7 (fresh [?superinterface ?declare]
8 (markerinterface ?superinterface)
9 (iface-self|or|sub ?superinterface ?interface)

10 (declare|parents-parent|type ?declare ?interface)
11 (aspect-declare ?aspect ?declare)))

This code first defines a rule for a marker interface: an
interface (line 3) that fails to have any members (line 4), i.e., is
a marker interface. This is then used in the assumption rule
as a goal in line 8. Line 9 provides bindings for the interface
and all its direct and indirect subinterfaces in ?interface. As
a result, line 10 succeeds on all declare parents statements
of marker interfaces or their (in)direct subinterfaces. Line 11
reveals the ?aspect that contains this declaration.

The above rules do not only identify the known instances
of this assumption. More importantly, they also reveal three
previously unidentified instances in the HealthWatcher case.
Firstly, the ServletCommanding aspect refers to the Com-
mandReceiver empty interface, which is stand-alone and



specifically designed for aspects to use as a marker interface,
as revealed by its comments. Secondly, the UpdateStateOb-
server aspects refers to the Observer interface contained in
the ObserverProtocol aspect. This nested interface was also
created specifically for other aspects to mark, as indicated
by its comments. Thirdly, analogous to the previous instance,
UpdateStateObserver also refers to the Subject interface
contained in the ObserverProtocol aspect, also created for
this. It is unclear why these are not present in the AA raw
data as they are indubitably assumption instances.

D. Mutual Exclusion Assumptions

AA states that “aspects may also be mutually exclu-
sive”, i.e., of the mutually exclusive set only one aspect may
be deployed. Again, this assumption cannot be unambiguously
defined in a code rule. We can infer some heuristics that
can however give possible cases for such a mutual exclusion.
Based on the conjecture that mutually exclusive aspects may
provide different implementations for the same feature and
hence act on the same parts of the software, we present two
such heuristics here: the same pointcut name and the same join
point shadows. Note that we do not claim that this conjecture
and the heuristic is particularly efficient, nor even valid. These
only serve as an illustration of the use of GASR.

1) Same Pointcut Name: For this heuristic we assume that
the name of the pointcuts convey their semantics and hence
if two aspects use pointcuts with the same name they may
implement the same feature. The following rule reveals such
aspects:

1 (defn same|pointcutname-aspect1-aspect2
2 [?name ?aspect1 ?aspect2]
3 (fresh [?pc1 ?pc2]
4 (differs ?aspect1 ?aspect2)
5 (aspect-pointcutdefinition ?aspect1 ?pc1)
6 (aspect-pointcutdefinition ?aspect2 ?pc2)
7 (pointcutdefinition-name ?pc1 ?name)
8 (pointcutdefinition-name ?pc2 ?name)))

The code of the rule is straightforward, obtaining pointcut
definitions of two different aspects where the name of the
pointcut is the same. For the HealthWatcher case this rule only
reveals two cases where an abstract pointcut is concretized.
In MobileMedia however 146 cases are detected, defying
manual analysis of each case. It is immediately apparent
that a small subset of pointcut names are present a sizeable
amount of times: “handleCommandAction”, “initMenu” and
“constructor”. This is as many aspects are used to implement
a command pattern and match on these pointcuts to realize the
pattern. Using GASR we can eliminate these matches from the
rule by amending extra conditions to the query, as below:

1(ekeko [?name ?as1 ?as2]
2 (all
3 (same|pointcutname-aspect1-aspect2 ?name ?as1 ?as2)
4 (differs ?name "handleCommandAction")
5 (differs ?name "constructor")
6 (differs ?name "initMenu")))

Running this query returns in eleven different matches,
which is a number that allows for manual analysis. This actu-
ally reveals six cases of copy-paste reuse of a pointcut: “cre-
ateMediaData”, “getMediaController”, “goToPreviousScreen”,

“initForm”, “appendMedias” and “startApp”. The two remain-
ing pointcut names: “resetMediaData” and “showImage” do
not reveal mutual exclusion of aspects.

The use of this heuristic did not reveal assumption in-
stances but is nonetheless valuable. This is as its use in the
MobileMedia case study illustrates the advantage of a general-
purpose code reasoner to adapt code queries to the actual case
being studied, in this case filtering out a high number of false
negatives. This resulted in the discovery of six cases of copy-
paste reuse, arguably not a good characteristic of the code.

2) Same join point shadows: Using the same pointcut
names is not the only possible indication of implementing the
same features. This second heuristic considers the join point
shadows of two aspects. If two different aspects have the same
collection of shadows, they may implement the same feature.
This can be detected using the code below.

1 (defn sameshadows|aspect1-aspect2
2 [?aspect1 ?aspect2]
3 (fresh [?shadows1 ?shadows2]
4 (aspect ?aspect1) (aspect ?aspect2)
5 (differs?aspect1 ?aspect2)
6 (findall ?shadow1
7 (aspect-shadow ?aspect1 ?shadow1) ?shadows1)
8 (findall ?shadow2
9 (aspect-shadow ?aspect2 ?shadow2) ?shadows2)

10 (differs ?shadows1 []) (differs ?shadows2 [])
11 (same-elements ?shadows1 ?shadows2)))

Notable here are lines 6 and 8: all shadows of both aspects
are gathered in the collections ?shadows1 and ?shadows2,
respectively. Line 10 ensures that the collections are not empty,
to exclude aspects without advice. Line 11 verifies that the
collections have the same elements, i.e., are the same.

For the HealthWatcher case two matches are found: HW-
TransactionExceptionHandler and HWDistributionExcep-
tionHandler. Both aspects perform complementary exception
handling: one for transaction exceptions and one for RMI ex-
ceptions. In MobileMedia nine different matches are found, of
which one is a mutual exclusion case: OneAlternativeFeature
and TwoAlternativeFeatures. Both add an exit command to
the same menu and hence are mutually exclusive. This case is
not mentioned in the AA paper but is present in the raw data.

E. Assumptions on the use of Inter-Type Declarations

One kind of purpose for inter-type declarations is to
provide additional public features that are packaged in the
aspect. In these cases these methods “are often not used from
the declaring aspect” [10], so the assumption is that other code
will call these aspects at some points. GASR accomplishes
automatic verification of this assumption by reasoning over the
results of our extended soot analysis, discussed in Sect. IV-B.
The code is as follows:

1(defn intertypemethod|unused [?itmethod]
2 (fresh [?sootmethod ?caller]
3 (intertype|method ?itmethod)
4 (fails (all
5 (intertype|method-soot|method
6 ?itmethod ?sootmethod)
7 (soot|method|callee-soot|method|caller
8 ?sootmethod ?caller)))))

In the code above, line 3 provides bindings for methods
that are inter-type declarations in ?itmethod. Lines 5 and 6



provide the bridge between the method and the corresponding
soot method, and lines 7 and 8 find methods that call that soot
method, binding these to ?caller. The goal in line 4 fails
if the goals in lines 5–8 succeed, i.e., if no bindings can be
found for ?caller. As a result the rule succeeds for inter-type
declarations that are not called.

In the case studies we have found one violation of this
assumption in HealthWatcher: Command.isExecutable() in
the CommandProtocol aspect is a default implementation for
the abstract method declared in the Command class. Yet this
method is never referenced at all. A record of this violation of
the assumption is as it is not present in the raw data of AA.
Hence this is again a new discovery made thanks to GASR.

F. Conclusion

In this section we have illustrated the usefulness of GASR
by implementing detection of aspect assumptions, as originally
envisioned by Zschaler and Rashid [10], which we name AA
for brevity. We have implemented logic rules for the detection
of inter-aspect assumptions, effectively achieving some of the
future work laid out in AA. We have run these rules on two
of the three systems used in AA for discovering the aspect
assumptions. The results of these GASR queries were verified
for correctness and completeness by manually inspecting both
the source code as well as by cross-checking with the full
published list of assumption instances.

All the assumption instances that are present in the AA
paper or in the raw data were detected using GASR. More
important though are the three following results: First, we
achieved fully automatic verification of assumption instances
in Section V-A and V-B. Second, we also detected three
previously unknown assumption instances in Section V-C and
one in Section V-E. Third, we have shown in Section V-D1 how
the general-purpose nature of GASR enables the tailoring of an
existing rule to the software under study. Thanks to this, we
incidentally found six cases of copy-paste reuse of pointcuts.

VI. THREATS TO VALIDITY

We consider GASR a reasonable baseline for a general-
purpose source code analysis tool for aspect-oriented program-
ming. However we can not and do not claim that it is suitable
for all possible kinds of reasoning over aspectual source code.

Considering the above restrictions, the first threat to va-
lidity is the fact that we only performed the experiments on
two concrete cases. Nonetheless, the rules were developed
independently of the case studies, on a test-first basis, and
should hence perform equally well on other case studies.
Secondly, we have only shown here that GASR works for rules
from the work on Aspect Assumptions [10]. As highlighted
in Section III, there is a large amount of work that performs
analysis of aspectual code and we do not validate that GASR
is as effective for those cases. By providing a comprehensive
library of predicates, discussed in Section IV-B, we do however
provide a large number of basic building blocks that can be
used to build these analyses using GASR. It remains to be
shown whether the library is extensive enough. If not, it may
need to be extended.

GASR is a source code analysis tool that works, as-is, on
ASPECTJ source code only. It has however been argued before,

e.g., by Zschaler and Rashid [10], that ASPECTJ is probably
the most used aspect-oriented language. As a result, GASR
can be used to analyse a large amount of aspectual source
code. Moreover, the predicate library is relatively language-
agnostic as it works in terms of the aspect-oriented concepts.
We are confident that if the library is adapted to work on
other languages, the majority of analyses built using GASR will
be straightforwardly reusable. We have demonstrated similar
results previously in earlier work on language-independent
source code analysis [29]. Hence, in our opinion, GASR truly
is general-purpose.

VII. CONCLUSION AND FUTURE WORK

There is a need for source code analysis of aspect-oriented
source code that is demonstrated by the multiple tracks of
research performing such analysis. On the one hand, existing
analyses need to be extended to take into account the aspect-
oriented nature of the software, and on the other hand this
nature gives rise to new kinds of analyses being required. Yet,
to the best of our knowledge, all of this work has been ad-hoc
and limited in scope to the specific analysis at hand. As a result
there has been a significant amount of duplicate work and it
is unclear whether any analyses may be customized to the
software being analysed, e.g., as we perform in Section V-D1.

We state that what is required is a general-purpose as-
pectual source code analysis tool, such that duplicate work
building analyses may be avoided and that existing analyses
may be customized to the task at hand. To the best of our
knowledge no such work has yet been published.

To address this need, we have implemented GASR: a source
code analysis tool in the tradition of logic querying. GASR is a
General-purpose Aspectual Source code Reasoner whose anal-
yses may be customized relatively straightforwardly, as illus-
trated in Section V-D1. In this paper we presented GASR, have
shown illustrative predicates for the reification of structural and
behavioral relations, and discussed their implementation.

Following this, we performed source code analysis on two
representative pieces of aspect-oriented software. We detected
a subset of inter-aspect assumptions that were previously iden-
tified by Zschaler and Rashid [10] by manual inspection of the
same software. Our automated analysis effectively consists in
realizing part of the future work outlined in that text: allowing
detection of assumptions and fully automatic verification that
some assumptions are not being violated. We detected the
same assumption instances as Zschaler and Rashid. More
importantly, we also found assumption instances that were
overlooked by these authors.

There are multiple avenues for possible future work. Firstly,
we contend that the current state of GASR is a reasonable
baseline for performing aspect-oriented source code analysis
but do not assert that it is sufficient for all kinds of analyses.
More experiments, implementing different analyses and exe-
cuting them on multiple case studies may reveal areas where
GASR is lacking. Secondly, the assumptions of Zschaler and
Rashid [10] which we did not implement yet are an avenue for
further work. Some of these however require the source code
to be annotated somehow with the intent of the developer.
This would require some formal notation for these intentions
and GASR to be extended to reason over these annotations.



Thirdly, GASR can be seen as base infrastructure on which
new and more advanced analyses can be built. The possibilities
are vast, obviously. Our personal preferences are for analyses
that can extract design-level documents [30] and that provide
information on whether there exist any dependencies and
interactions between aspects [31].
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