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ABSTRACT

A key argument in favor of live programming languages and
environments is that a better programming experience is
achieved through maximizing feedback to the programmer.
Intuitively, this is a compelling argument, but looking at val-
idations of live programming languages and environments,
the results are not encouraging at all. This essay concerns
the question whether it is possible to validate that live pro-
gramming is faster, or more correct, or that programmers
have a better development experience. I provide a critical
review of validations of live programming and talk about
my own experience with such a user study. The goal of this
text is to contrast the intuition with the scientific validation,
such that we, as a community, can ask ourselves the question
of whether we can validate the arguments in favor of live
programming, and if so, how.
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1 INTRODUCTION

In my current job I am sometimes confronted with the pro-
gramming experience of present-day mainframe program-
mers, i.e. how the people that work on the software of our
banks, insurance agencies, airlines, ... produce and maintain
code. Say that we want to develop a “Hello, World” in Cobol
(of course), then the story goes a little something like this:

(1) We open our ‘console window’ that holds a connection
to the mainframe, giving us a character-based interface
of 80 by 35 characters.

(2) We create the file that will hold the program text. To
do this, we run a special utility for file creation that
has a text-based menu interface where we specify the
name and various pieces of metadata.

(3) We open this file in the text editor, which is alike to vi,
write the source code and save it.

(4) Compilation is a batch job that needs to be specified
in a separate file, known as a JCL. So we create that
JCL file using the file creation utility.

(5) In the text editor we write a batch job specification
that lists the compiler command to run as well as the
name of input and output file.

(6) Finally ready to compile, we submit the JCL to the op-
erating system to execute whenever resources permit.

(7) To see the compilation job run, we open a job inspec-
tion utility that lists our current and past jobs, find our
compilation job in the list and pull up the information
on it. After the job has run, we can see the run com-
pletion status and the compilation output messages, if
any. In case of errors, we can list the error messages,
write them down somewhere and then go back to the
editor to fix the errors

(8) To run the program, when successfully compiled, we
need also use a JCL, i.e. repeat step 4 through 7. So
we create the file, edit it, submit the job for execution,
and after it finishes we can view its output in the job
inspection utility.

Consider, in contrast, the development experience of writ-
ing “Hello, World” in a live programming environment such
as Smalltalk:

(1) We open the development environment GUI.
(2) In a workspace window we enter one line of code.
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(3) We select that line of code and from a context menu
pick the ‘run’ option. If there is an error in compilation,
the cause of the error is shown in the program text.

(4) Compilation and execution happens immediately and
the result of execution is directly visible.

In terms of development experience, there are four steps
to take instead of eleven, and moreover each step is arguably
a more enjoyable programming experience. So, already with
such a simple example, it seems obvious to state that pro-
gramming in a live programming environment is a much
better experience.

More fundamentally, the argument in favor of live pro-
gramming languages and environments is that a better pro-
gramming experience is achieved through maximizing feed-
back to the programmer [13]. Ideally this is done through a
‘continuously active’ system: every edit action triggers com-
putation of the program and the display of computed values
is updated live, as inputs vary. Such tightening of the feed-
back loop lightens the cognitive load of building accurate
mental models of the system when its execution is observed,
hence providing a better programming experience.

Compare the programming experience of mainframe pro-
gramming versus the experience of live programming. The
latter is “obviously” better. But is it better in a way that can
be scientifically measured? Put differently, can we validate
that live programming is faster, more correct, or that pro-
grammers have a better development experience? Intuitively,
this is the case, but if we look at the work on validating live
programming languages and environments this intuition
does not hold up so well.

This essay provides a critical review of validations of live
programming and talks about my own experience with such
a user study. The goal of this text is to contrast the intuition
with the scientific validation, such that we, as a community,
can ask ourselves if live programming has been sufficiently
validated, and if not, how to overcome the issues with the
current validation.

2 THE MEANING OF LIVE

The field of live programming has been characterized by
multiple authors in multiple ways, and not all of these char-
acterizations coincide fully. I do not wish to take a stand here
on a specific definition nor to introduce a new definition of
live programming. However I consider it necessary to set
the stage here for the argument I make in this text.

First I wish to distinguish between the terms of livecoding
and live programming, and for this I refer to the character-
ization of Swift et. al. in their work on Visual Code Anno-
tations [12]. In this text, the authors describe Livecoding
as a performance art where the artist is a programmer that
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constructs an audiovisual art piece live in front of an audi-
ence. In contrast, live programming is the direct construction,
manipulation and visualization of a program’s runtime state.

The above definition of live programming allows for a
significant level of flexibility in how direct construction is
performed. In this respect, the liveness scale proposed in
Tanimoto’s work on Viva [13] is informative with regard
to establishing a degree of liveness of a particular language.
Even though the original levels only considered visual lan-
guages they can be recast in more general terms, as has been
performed e.g. by Burnett et.al. [1].

For the purpose of this text, the four levels of liveness can
be characterized as follows:

Level 1: Informative This is the base level, all program-
ming languages are at least informative as their source
code informs the eventual execution.

Level 2: Significant Is there a 1-to-1 relationship of the
visible code with the running code? Changing a piece
of the visible code should change its executing com-
plement.

Level 3: Responsive Is updating done at every atomic
edit operation, e.g. at every keystroke of a textual lan-
guage?

Level 4: Live Is there a live visual representation of the
code? Does it reveal (internal) program state or the
program’s actions in response to the input it receives?

Note that in non-visual languages the 4 levels of liveness
do not necessarily impose a strict hierarchy: it is possible
to have a level 4 visual representation of the running code
without being responsive at level 3. An example of this is
the Flogo II language [6].

In my opinion, the difference between level 2 and level
3 is a highly significant step in increasing the amount of
liveness. This is because it marks the difference between
needing to explicitly conclude all code editing actions ver-
sus edits automatically and immediately being integrated.
In fact, Burnett et.al. only consider level 3 and 4 to be live
programming [1]. Additionally, this is also hinted at by Han-
cock in his metaphor of live programming versus normal
programming as the difference between using a water hose
and a bow and arrow [6]. The continuous stream of water
allows for much easier aiming at the target than the manual
reloading required with a bow and arrow. In the same way,
the continuous updating of program code makes it easier
to establish whether the goal behavior has been reached.
This is in contrast with needing to ‘accept’ every significant
code edit action before the new behavior takes effect. Put
differently, level 3 live programming minimises the “gulf of
evaluation” [9] for establishing the effect of a code change,
whereas level 2 requires an extra step to bridge this gulf.
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Hence, when considering live programming, for the pur-
poses of this text I only regard languages and environments
of level 3 and above. Notably, Smalltalk and other dynamic
languages are not level 3 since they need an explicit ‘accept’
or ‘evaluate’ action. Returning to our example in the intro-
duction, we would hence imagine that level 3 and above lan-
guages should yield an even better programming experience
than the Smalltalk example. However, in the case of “Hello,
World” the example is arguably too simple to really show the
advantages of live programming. This shows that in simple
examples, the programming experience improvements of
level 3 over level 2 would be almost trivial. So, the intuition
is that advantages of a live programming environment will
show themselves more clearly on complex cases.

3 THE PROOF OF THE PUDDING IS IN
THE EATING

In my work on live programming I however found myself a
bit disappointed with the aforementioned pudding. This is
because, while there is an intuitive argument that shows that
live programming is better than non-live programming, to
the best of my knowledge there is no significant amount of
validation of this assertion in the research literature. What
I mean by significant is: a positive result of a user study or
controlled experiment on a realistic development task, and
considering both code writing and comprehension. I here
give a brief overview of the work that comes the closest to
such a validation of Level 3 or 4 languages and environments.

The work of Oney et.al. for expressing UI behavior in the
InterState system [10] combines state machines and con-
straints in a level 3 and 4 live programming language. A
comparative laboratory study was performed with 20 expe-
rienced programmers. The goal was to establish whether
InterState code is more easy to understand and modify than
event-callback code as used in traditional UI's. The study
used two different tasks and two languages: JavaScript and
InterState. Participants were asked to add a new behavior to
an existing application and to make modifications to an ex-
isting behavior of a different application. The authors found
that in both tasks participants were twice as fast when using
InterState and also that: “Most participants felt comfortable
with InterState’s visual notation, calling it ‘intuitive’ and
‘clean’” The setup of the experiment however focuses nar-
rowly on evaluating an alternative solution to the arguably
problematic event-callback model, not on benefits of live pro-
gramming outside of this model. I argue that improvements
are probably due to the issues of the event-callback model
and not of the non-live nature of JavaScript. Returning to
the study, we can also see that there is no data that shows
whether InterState yields improvements in speed or accuracy
for any kind of code understanding tasks. This lack of data
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is significant, since professionals spend at least half of their
time on code understanding during code maintenance [4].

Forms/3 is a spreadsheet language [1] where, instead of
using a matrix of cells, cells are freely placed in a form by
the user. Each cell has a formula, and the computed value
of a cell is the evaluation result of the formula. Wilcox et.
al. used it to evaluate the advantages of live programming
when considering debugging tasks [14]. A live version of
Forms/3 is compared to a non-live version in an user study
with 29 subjects working on two different tasks. All subjects
worked with both the live and non-live version of Forms/3,
one half first using the live version. The article is quite ex-
tensive and reveals a well-thought out and executed user
study. I therefore consider the results quite important. They
however do not shed a universally positive light on live pro-
gramming. To quote part of the conclusion of the article:
“liveness was not the debugging panacea that developers
of direct-manipulation programming systems might like to
believe it is” [14]. This statement is in line with an observa-
tion of the authors earlier in the text that they have “been
unable to locate any studies of liveness’s effects on either
direct-manipulation programming systems or on debugging.
However, there are results from related domains that seem
to make assorted — and often conflicting — predictions about
what can be expected about the effects of liveness on debug-
ging in such programming systems.” [14]. There are many
interesting results in this study. For example, when consider-
ing quantitative results there was no statistically significant
difference in debugging accuracy. In contrast, the qualitative
results however show that 75% of subjects were more confi-
dent in their results and they believed liveness helped with
accuracy. So the intuition that live programming is better is
not backed up by the results of the experiment.

Kramer et.al. investigated how live programming languages
impact the behavior of the developer [7] with a between-
groups user study with 10 subjects using a live and non-live
version of JavaScript. Subjects had to implement function-
ality in three different tasks where the challenges were of a
different nature. I omit more details on the setup of the exper-
iment here, and instead refer to the article, which provides a
good overview of the work performed. An important result
of this work is that the time necessary to complete the tasks
was not significantly different between the live and non-live
version of the language. The intuition that live programming
is better is actually touched on by the text since authors state
that “for each task the mean task completion time is lower in
the live coding condition, but the standard deviation is the
same order of magnitude as the means” [7]. Our intuition of
being better may be correct, but maybe the improvement is
negligible in many settings. One notable element that points
in this direction is the following: the time to fix bugs that
were introduced while coding was also measured in this
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experiment. While there is no significant difference in the
number of bugs introduced while developing, the time taken
to fix them did decrease when using the live version of the
language (in contrast to the results of Wilcox et. al.).

A last case I wish to present is the controlled experiments
on the construction and code understanding of robotic behav-
iors in the context of the work of Campusano et.al. on Live
Robot programming [3] (a paper of which I am a co-author).
We performed two within-subjects controlled experiments,
on 20 test subjects in total. The goal was to evaluate the
accuracy and speed of development using live programming
versus a classical means for robot behavior programming.
The first experiment focused on program comprehension and
the second experiment on program writing. In a nutshell,
for this controlled experiment we found that live program-
ming did not improve the programming experience in terms
of speed and accuracy. This was so even though the test
subjects liked it better than the non-live development envi-
ronment. For the details on the setup and the results I refer
to the text of the paper. Instead, here I wish to focus on some
of the reasons why the experiment did not provide a good
validation of live programming.

4 EXPERIMENTAL PRESSURES

To test our level 3 live programming language LRP [2, 5], a
language for the programming of robotic behaviors, we set
out to create a test setup that is as realistic as possible. The
goal was to provide a thorough and in-depth validation of
the overall programming experience of a live programming
language. This was then to be followed by later on studying
individual aspects of the language in detail, to see which ones
turned out to be the most beneficial. (Sadly, those followups
never happened.) To make our user study as realistic as pos-
sible, we set up a typical development environment using
the standard tools for such a job. These includes the de-facto
standard middleware for robotics, ROS [11] and its accompa-
nying robot simulator, which is typically used for software
testing in robotics!. Also, the programs to be worked on in
the experiment corresponded to credible robotic tasks.

In retrospect, due to our goal of being as realistic as possi-
ble there were many elements that complicated the experi-
ment and raise the question whether the benefits of liveness
are testable in more complex examples. If so, the research
question is which examples are big enough to be realistic
and what is needed to be able to perform such tests.

I wish to focus more in detail here on four factors here that
I consider the most important in restricting the feasibility of
a realistic user study:

No robots were harmed during the setup or execution of this experiment.
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Time. Sessions of participants lasted up to four hours,
which is arguably too long because, e.g., it could cause par-
ticipant fatigue. We could however not shorten this time
further without simplifying the tasks too much. This large
amount of time was needed first because participants needed
to perform two reasonably complex tasks: one in each lan-
guage, and second because a warm-up phase was needed
before each task to train the participants in the particular-
ities of the language. Note that participants were already
knowledgeable on robotics and had some experience with
the typical development environment, i.e. middleware and
simulator. Hence the warm-up phase was focused solely on
the programming language used. Yet, even with taking this
amount of time for each task our observations of the par-
ticipants seem to indicate that the complexity of the task
is low enough that it is straightforward to build a mental
model. Hence liveness does not seem to provide an important
benefit in this setting.

Unrealistic Code. In both the code comprehension and code
writing experiment we had to use code that is arguably un-
realistic. This is because even though the tasks and example
code we provided were representative of robotic software,
we had to obfuscate names. In the pilot studies we found
that subjects were relying almost purely on the names of
software entities to answer questions on comprehension and
to incorporate them in their programs. Hence, to remove
this bias caused by relying solely on names we renamed all
entities to a four-letter random name, e.g. aomg, dzus, sphv.
As a result, subjects needed to truly investigate the code to
understand it and be able to reuse or adapt it. The code has
however become more artificial due to this renaming, adding
a confounding factor in understanding since the names are
not realistic and probably also harder to remember. If the
tasks were more complex and the provided code more in-
tricate, naming would probably not be such a confounding
factor. This since the name alone would not be sufficient to
well understand the role of an entity. But, as said above, this
was impossible due to the limitations on time.

Live All The Things. Even though the participants had ex-
perience with the robotic middleware that we used in our
experiment, its API turned out to be an extremely large con-
founding factor. The API is inherently complex to work with,
and this complexity impacted the entire development experi-
ence. We observed many errors being made in its use. More-
over, in almost every unfinished sub-task, the participants
lost time due to issues using the external API. This is a no-
table factor because live programming languages do not live
in isolation. If they are to be used on large or complex prob-
lems they will indubitably work with external resources, and
we have seen that their nature may badly taint the live pro-
gramming experience. We may need to ‘Live all the things",
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i.e. ensure that all significant parts of the system are live,
before we can reap any noticeable benefits, and that is surely
a high price to pay. Things may however not be so bleak:
in our observations of the subjects, we found that there is
a slight learning effect in the use of the APL Participants
got more proficient in using it as time passed and hence its
negative impact reduced slightly. Maybe more time working
with the API could remove the barrier it poses, but then we
end up in trouble with regards to the time needed to perform
the experiment. Moreover, I am not convinced that the effect
can be minimized sufficiently to allow the benefits of live
programming to show, in part also because of the following:

The Force Of Habit. A last factor is the force of habit: it
seems that since participants are not used to live program-
ming they do not take advantage of all the benefits of liveness.
One clear example of that is that in the program compre-
hension experiment almost none of the participants made
any modifications to the program to see how the behavior
changed. An example for writing code is the possibility to
force the program to execute a certain behavior subroutine.
This was useful in the experiment as it allowed skipping a
lengthy sequence of steps that are not relevant to the code
written by the subject. Yet almost none of the subjects made
use of this shortcut, causing them to waste valuable time.
A similar observation was also made by Kubelka et.al. [8]:
developers are not taking advantages of the features offered
by live programming. The consequence I draw of this is that
with many obvious missed opportunities to use liveness, it is
hard to evaluate the benefit of liveness. I however do not see
a clear way to mitigate this issue. Using only participants
that are used to the different features of the language being
validated would introduce a bias in favor of it. To remove
bias, all participants should be trained in both languages such
that they have enough productive habits in both languages.
I expect this however to be prohibitively expensive.

Conclusion. In our experiment to validate LRP in a realistic
setting, we encountered multiple confounding factors that
had an arguably negative impact on the results. It is however
not clear how to remove these factors in a way that the
setting remains realistic.

5 THE LAW OF DIMINISHING RETURNS

Yet why are these experiments so important? Quantitatively
the evaluations of live programming are not convincing, but
developers do report that they have a better development
experience with live programming and this surely counts for
something. I argue that this is however not sufficient, using
the following counter-example: Mainframe developers that I
have talked to are actually content with their development
experience and argue that they are quite productive.
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Development on the mainframe, as presented in the be-
ginning of this text, seems horrid but in practice it turns out
not to be the case. Mainframe programmers have a set of
productive habits that allow them to navigate the variety
of utilities in the flash of a few keystrokes. This is typically
thanks to the use of Ul macros provided by the application
that connects to the mainframe. For example, creating a file
barely takes more time then typing in its name, since setting
its attributes takes a few key presses (if they are not already
the default). Also, developers don’t need to wait for compi-
lation as these jobs typically are given top priority (since
developer time is expensive). What we, as outsiders, see as
overhead is ‘just part of the process’ and done quickly, out
of habit, almost without thinking.

The point here is not to say that mainframe programming
is as enjoyable or productive as live programming. But main-
frame programmers being happy and quite productive (in
their self-assessment) shows that we can not solely rely on
qualitative results in user studies. We need quantitative re-
sults and I have not been able to find nor produce them.

From my experience, I fear that there is a law of dimin-
ishing returns here. Firstly, consider the rewards of using
liveness: maybe level 3 is only marginally better than level
2, but at a very high cost of development of the language or
system. Secondly, the same applies in evaluation: getting par-
ticipants to be proficient with both systems is prohibitively
expensive yet crucial to avoid them to miss opportunities.
Yet it is not clear that these opportunities, which seasoned
developers would make use of, can actually significantly
improve the development experience. In summary, in both
cases it seems that bigger investments are needed but that
they yield smaller benefits; the law of diminishing returns.

So, while level 3 liveness may intuitively provide a better
programming experience than level 2 or less, I fear that this
is overshadowed by other factors, especially in the context
of (the evaluation of) a larger workload. I have argued in
this text that there is as yet no publication that refutes my
fear. In order to be able to advocate live programming, the
community should be able to show convincing validations
in complex settings or be faced with the argument that the
returns of level 3 live programming are too low to justify the
investment.
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