
Summary of the Third Workshop on Domain-Specific Aspect
Languages

Thomas Cleenewerck
Vrije Universiteit Brussel, PROG

Pleinlaan 2,
1050 Brussel, Belgium

tcleenew@vub.ac.be

Jacques Noyé
Ecole des Mines de Nantes

4, rue Alfred Kastler, BP 20722
44307 NANTES Cedex 3, France

Jacques.Noye@emn.fr

Johan Fabry
PLEIAD Lab

Computer Science Department
(DCC)

University of Chile
jfabry@dcc.uchile.cl

Anne-Françoise Lemeur
LIFL, ADAM Team
40, avenue Halley

59655 Villeneuve d’Ascq, France
lemeur@lifl.fr

Éric Tanter
PLEIAD Lab

Computer Science Department (DCC)
University of Chile

etanter@dcc.uchile.cl

1. Introduction to the workshop
The tendency to raise the abstraction level in programming
languages towards a particular domain is also a major driv-
ing force in the research domain of aspect-oriented program-
ming languages. As a matter of fact, pioneering work in
this field was conducted by devising small domain-specific
aspect languages (DSALs) such as COOL for concurrency
management, RIDL for serialization, RG, AML, and oth-
ers. After a dominating focus on general-purpose languages,
research in the AOSD community is again taking this path
in search of innovative approaches, insights and a deeper
understanding of fundamentals behind AOP. Based on the
successful DSAL’06 and DSAL’07 workshops, and the spe-
cial issue of IET Software journal on Domain-Specific As-
pect Languages, this workshop series continues to support a
growing trend in AOSD research.

The workshop aims to bring the research communi-
ties of domain-specific language engineering and domain-
specific aspect design together. In the previous successful
editions held at GPCE’06/OOPSLA’06 and AOSD’07 we
approached domain-specific aspect languages both from a
design and a language implementation point of view. New
for this edition is that we explicitly invited contributions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Workshop DSAL’08 April 1st, 2008 Brussels, Belgium.
Copyright c© 2008 ACM 978-1-60558-146-0. . . $5.00

of work on adding domain-specific extensions (DSXs) to
general-purpose aspect languages (GPALs). The focus on
language embedding raises specific issues for language de-
signers, such as proper symbiosis between, and composition
of, DSXs.

We sought contributions related to domain-specific aspect
languages, more particularly (but not limited to):

• design of DSALs and DSXs
• successful DSALs, DSXs and their applications
• issues in both design and implementation of DSALs and

DSXs
• methodologies and tools suitable for creating DSALs and

DSXs
• semantics and composition of DSALs and DSXs
• disciplined approaches for invasive metaprogramming
• error reporting in DSALs and debugging of DSALs
• approaches for composable language embeddings
• mechanisms for interaction detection and handling in

DSALs
• theoretical foundations for DSALs
• analysis about the specificity spectrum in aspect lan-

guages
• key challenges for future work in the area

The remainder of this workshop summary is structured
as follows. Section 2 gives an overview of all the papers pre-
sented at the workshop, which are divided in two groups: de-

sign and implementation of DSALs, and experience reports.
The workshop discussions are summarized in Section 3. In
the three main discussions we defined what constitutes a
DSAL, we investigated how domain-specificness surfaces in
DSALs and what design criteria are used when an imple-
mentation approach for DSALs is selected.

2. Presented Papers
The papers which were presented at the workshop can be di-
vided into two groups.The first group of papers deals with is-
sues in the design and implementation of DSALs and DSXs,
while the second group discusses about experiences of de-
signing particular DSALs and DSXs.

2.1 Design & Implementation Issues
Common to the papers in this group is they all are concerned
with the issue of composability. This quality is approached
from different perspectives ranging from a single to multiple
DSALs and from an implementation point of view to a
language design point of view. Each paper offers a tool in
which a disciplined approach for invasive metaprogramming
is used to design and implement DSALs and DSX.

• “Prototyping and Composing Aspect Languages using
an Aspect Interpreter Framework” by Wilke Havinga,
Lodewijk Bergmans, Mehmet Aksit [HBA08].
This invited talk investigates the composability among
different DSALs by offering an aspect interpreter frame-
work. The challenge is to offer support that is general
enough to express the DSALs and their interactions.

• “Modularizing Invasive Aspect Languages” by Thomas
Cleenewerck, Theo D’Hondt (Technical Paper) [CD08].
In this paper composability of domain-specific aspect
language constructs of a single DSAL is investigated by
focussing on the modularization of the implementation of
each language construct. The challenge of modularizing
the constructs lies in expressing the composition of the
invasive semantics of each language construct in a mod-
ular fashion.

• “Dynamically Linked Domain-Specific Extensions for
Advice Languages” by Tom Dinkelaker, Mira Mezini
(Technical paper) [DM08].
Composability is approached in this paper from the ex-
tensibility point of view. An implementation technique
is demonstrated in which specific DSX can be easily de-
fined to serve as advice languages in aspect languages.
The challenge is to embed the language extensions and
coordinate their execution.

• “A DSL to Declare Aspect Execution Order” by Antoine
Marot, Roel Wuyts (Short paper) [MW08].
One particular facet of composability is the execution
order. In this position paper, the authors identify some
problems and postulate a possible solution for the design
of DSALs that should improve composibility.

2.2 Design & Implementation Experience
Experiences drawn from the design of particular DSALs and
DSXs have again proven to be very valuable for assessing
the pros and cons of DSALs and DSX and for driving the
workshop discussions.

• “Towards a DSAL for Object Layout in Virtual Ma-
chines” by Stijn Timbermont, Bram Adams, Michael
Haupt (Short paper) [TAH08].
This position paper argues in favor of the design of a
DSAL to handle the tangled object layout concern in vir-
tual machines. The language being proposed explores the
boundaries of DSALs as it does not prevent the scattering
but rather allows modular reasoning over scattered code
fragments.

• “Towards a Domain-specific Aspect Language for Leas-
ing in Mobile Ad hoc Networks” by Elisa Gonzalez
Boix, Thomas Cleenewerk, Jessie Dedecker, Wolfgang
De Meuter (Short paper) [GBCDM08].
This paper motivates that leasing code in distributed ap-
plications is a complex crosscutting concern, consisting
of many subconcerns which, in turn, are also tangled and
scattered. The authors present a DSX rather than a new
DSAL and show that event-based AOP (a natural fit in
an asynchronous computational model) introduces chal-
lenging design issues.

• “A Domain-specific Language for Parallel and Grid
Computing” by João L. Sobral, Miguel P. Monteiro
(Short Paper) [SM08].
The DSAL presented in this paper aims to promote the
localization of parallelization and gridification issues into
well-defined modules. Interestingly, it also contains the
main motivations for implementing the DSAL on top of
AspectJ.

Each of these papers is contained in this workshop pro-
ceedings volume.

3. Discussions
The workshop hosted three main discussions. First, we de-
fined what constitutes a DSAL, second, we investigated how
domain-specificity surfaces in DSALs and, third, we listed
the design criteria that are used when an implementation ap-
proach for DSALs is selected.

3.1 Defining DSALs
There were a couple of papers that challenged the boundaries
of what constitutes a DSAL and what not. Timbermont et
al. [TAH08] argued that DSALs can be used to merge and
reason about domain-specific object layout descriptions of
VMs. This language does not have pointcuts and does not
separate the concern. So the question, also stated by the
authors, is: when is a DSAL not a just a plain DSL? A similar
question was raised through the work of Dinkelaker and

Mezini [DM08] where DSLs are used to define advices of
aspects. In contrast, Gonzalez et al. [GBCDM08] based their
language on general-purpose event-based AOP. So when is
a DSAL not just a GPAL? Lastly, Sobral et al. [SM08]
implemented their DSAL on top of AspectJ. Does this imply
that these DSAL programs, from an implementation point of
view, are no longer crosscutting in nature?

These questions led to quite vivid discussions on what is
a DSAL. The outcome of this discussion led to the following
definition of a DSAL.

Conjecture 1. A DSAL is a DSL for expressing crosscut-
ting concerns, more formally a DSL whose programs are
non-functionally composed with other programs.

In function(al) composition defined by the mathematical
operator ◦, values are provided to a unit of computation (i.e.
a module, a function, etc.) and are subsequently processed
in order to produce several other values. Computations are
thus solely parameterized. In non-functional composition it
is not sufficient to only pass values to change the outcome
of the computation but the computation itself needs to be
changed. Aspects are an example of this style. They cannot
be composed in a “mere” functional style, because they need
to change the behavior of other computations.

The discussion on this conjecture touched on the follow-
ing subjects:

Monads The main characteristic of the implementation
techniques for aspects is that they all operate at the meta-
level in order to change the behavior of other modules.
In the discussion some border cases were discussed, e.g.
monads. Monads capture a frequently reoccurring pat-
tern in functional programs to control the composition
of functional computations. It has been shown that mon-
ads are expressive enough to implement aspects [DM97].
Moreover, monads are implemented with higher-order
functional programming. So, monads seem to implement
aspects by “mere” functional composition. However, this
is not entirely true because in order to benefit from the
improved composition possibilities provided by monads,
programs need to be written in monadic style. More con-
cretely, a program needs to be rewritten using the monad
abstraction so that it can be composed with monads im-
plementing extensions [Wad92]. Monads thus introduce
an extra “parameter” to the program, and are used to ex-
pose hooks within the execution of a functional program.
By exploiting these hooks, aspects can be implemented as
a monad that extends the execution of the base program.
Clearly, although monads are functional, an additional
meta operation is necessary to transform the programs
involved in a composition.

DSL From our conjecture of what constitutes a DSAL we
can conclude that composition is an inherent and distin-

guishing characteristic of DSALs in comparison to DSLs.
Despite the emphasis on composition with another pro-
gram, the conjecture does not distinguish between sym-
metrical and asymmetrical AOP approaches. Like most
GPALs, most DSALs are asymmetric. In this case, the
program produced by a DSAL cannot be executed. How-
ever, in the general case we do not preclude a DSAL from
yielding an executable program, which is then composed
with another program.

GPAL The conjecture does not explicitly mention GPALs.
Instead we get an unambiguous definition of DSALs.
Moreover, it avoids a number of confusions. The first
confusion may arise when using a GPAL to implement
the DSAL. In such a case, although a domain-specific as-
pect is compiled into a single module the DSAL never-
theless remains an aspect language dealing with a cross-
cutting concern. The second confusion may arise when
comparing other common characteristics of GPALs with
those of DSLs. One of them is declarativeness. DSALs
are not always more declarative than GPALs. Like in
DSLs declarativeness is neither a necessary condition nor
a sufficient one. The third and last remark is about the
separation between pointcut and advice. In GPALs these
are commonly very clearly separated. In DSALs this is
not always the case. See the next section for a more elab-
orate discussion.

Inversion of Control Dependency inversion and depen-
dency injection are patterns to invert the dependency
relations between modules. However, in each of those
patterns, modules are still parameterized with other de-
pendent modules or execution control is directed by new
modules.

Separation Separation of concerns is an important quality
of GPALs. This is also the case for DSALs. It is implicitly
part of the conjecture, because an external specification
is non-functionally composed with another module by
changing the behavior of that module.

CSL Domains can be composed of various concerns.
For example consider the various concerns (struc-
ture, rollback, view, delegation) that are handled in
the KALA [FTD08] DSAL. Concern-specific languages
(CSL) are languages used to address a specific concern,
and not a specific domain. CSLs can be confused with
DSALs. Like DSALs, concerns can be stand-alone pro-
grams. Unlike DSALs, concern-specific languages how-
ever also encompass non crosscutting concerns that can
be composed using functional composition techniques.
This means that DSALs are CSLs but not the other way
around.

Other relations with existing terminology and techniques
may need to be investigated. One of them, which was iden-
tified, but not further discussed, is invasive composition.

Joint-point Model Pointcut Advice
Domain-specific Domain-specific Domain-specific

(1)

(2)

(3)

(4)

Figure 1. Overview of the argumentation for Conjecture 2.

3.2 Join Points, Pointcuts, and Advice in DSALs
We observed that, in the past editions, including this one,
only a small amount of work in the DSAL community
has focused on domain-specific pointcuts. DSALs use ei-
ther simple domain-specific pointcuts like in [SM08], or
revert to GPAL solutions like in [DM08], or mix both like
in [GBCDM08]. One exception this year was the work in
[CD08] where pointcuts are defined in terms of the con-
cepts from the domain of the aspect language in order
to modularly compose the semantics of DSAL constructs.
Moreover, similarly to the early aspect languages such as
COOL [Lop97], in some current DSAL proposals such
as [TAH08] the separation between poincuts and advices
is not very clear.

To summarize, the question is how does the domain-
specific nature surface in DSALs. Concerning the relation
between join points, pointcuts and advices in DSALs it is
our conjecture that:

Conjecture 2. A DSAL must at least provide a domain-
specific join-point model, domain-specific pointcut lan-
guage or domain-specific advice language.

Join points Join points are the points of reference that pro-
grams including aspects can affect. These can be lexical
(in the program text) or dynamic (run-time actions).

Pointcuts A pointcut denotes a set of join points to which
an advice is applied.

Advice An advice is the action that is taken at a join point.
In case of execution events, it is also necessary to stip-
ulate when advices are executed e.g. before or after the
execution point.

Figure 1 sketches an argumentation for the above conjec-
ture. Each crossed arrow depicts a ”does not imply” rela-
tionship. For example, a domain-specific pointcut does not
imply a domain-specific join-point model. Given all these
relationships, we can conclude that a domain-specific join-
point model, pointcut or advice can independently be made
domain specific from one another. Hence, it suffices for a
DSAL to make at least one of these three domain specific.

These three parts of a DSAL can be independently made
domain-specific because:

(1) The expression of a pointcut can be domain specific,
while relying on a GPAL pointcut model. An example
of this can be found in KALA [FTD08]. A KALA point-
cut has the form of a method signature (with AspectJ-like
wildcard support). This is a domain-specific abstraction:
a KALA pointcut is equivalent to 2 AspectJ pointcuts,
and therefore is an abstraction over the AspectJ join-point
model. A KALA pointcut identifies both the execution of
the corresponding method (which is one AspectJ point-
cut), as well as calls to getter and setter methods in this
method (which is a different AspectJ pointcut).

(2) GPAL predicates are domain independent. They can thus
also be applied to domain-specific join-point models. For
example,a general-purpose pointcut language that works
by filtering on name-attribute pairs can be coupled with
a join-point model that reifies domain-specific name-
attribute pairs. A more concrete example in this style
is the selection of one join point by referring to its name
e.g. in a simple DSAL for workflows a single action can
be selected.

(3) Domain-specific advices are often used in conjunction
with GPAL predicates. An example of such a language is
COOL [Lop97].

(4) Predicates select elements from the domain-specific
join-point model. This does not imply any relationship
to how the advice is specified.

Let us remark that during the workshop we did not
discuss the relation between domain-specific advices and
domain-specific join-point models. In particular, does a
domain-specific join-point model imply a domain-specific
advice?

3.3 Tool support
In the past, DSALs have been implemented from scratch
by ad-hoc implementation approaches. It is only quite re-
cently that implementation toolkits are becoming available
for DSALs. We distinguish between three implementation
approaches:

1. Implementations on top of or in a GPAL like As-
pectJ or extensible GPALs such as Logic Meta-
Programming [BMV02].

2. Implementations using general language development
approaches such as Stratego [FTD08], JastAdd [AET08],
LTS [CD08].

3. Implementations using dedicated toolsuites. Compile-
time approaches such as Josh [CN04], the AspectBench
Compiler (abc) [ACH+05], load-time approaches such
as Reflex [FTD08], or run-time approaches based on
interpreters such as the ones presented by Havinga et
al. [HBA08] and Dinkelaker and Mezini [DM08].

What conscious design criteria based on engineering
qualities and implementation mechanisms are being used
when choosing an implementation approach?

A somewhat remarkable result that surfaced during the
discussions is that AspectJ is frequently chosen, despite its
well-known limitations. The main reasons for this choice are
that research results can be more easily communicated, and
its ajc implementation is a robust and efficient tool that is
well supported. The most important downside to using this
standard implementation of AspectJ for DSAL development
is its closed nature. This makes it hard, if not impossible to,
e.g. have a domain-specific join-point model that requires
join points that are not captured by AspectJ. The availability
of an extensible, efficient, and well-supported compiler for
AspectJ: abc [ACH+05], compensates the downsides of the
standard implementation.

AspectJ also serves as an easy reference to compare fea-
tures. The downside is that a lot of approaches that tackled
some its limitations are not always referenced to compare
features. In order to boost the research results of this com-
munity we concluded that alternative approaches should be
more accessible. As such their correctness and effectiveness
can be more easily and reliably checked. They should also
be more flexible for extensions.

Acknowledgments
The organizers wish to thank the following workshop at-
tendants for their especially active participation in the dis-
cussion groups: Elisa Gonzalez, Stijn Timbermont, An-
toine Marot, Miguel P. Monteiro, Tom Dinkelaker, Wilke
Havinga, João L. Sobral, Edgar Souse, Jenny Munnely, and
Oscar Gonzalez.

References
[ACH+05] Pavel Avgustinov, Aske Simon Christensen, Laurie

Hendren, Sascha Kuzins, Jennifer Lhoták, Ondřej
Lhoták, Oege de Moor, Damien Sereni, Ganesh Sit-
tampalam, and Julian Tibble. ABC: an extensible
AspectJ compiler. In AOSD’05: Proceedings of the
4th international conference on Aspect-Oriented
Software Development, pages 87–98, New York,
NY, USA, 2005. ACM.

[AET08] Pavel Avgustinov, Torbjörn Ekman, and Julian
Tibble. Modularity first: a case for mixing AOP
and attribute grammars. In AOSD’08: Proceedings
of the 7th international conference on Aspect-
Oriented Software Development, pages 25–35,
New York, NY, USA, 2008. ACM.

[BMV02] Johan Brichau, Kim Mens, and Kris De Volder.
Building composable aspect-specific languages
with logic metaprogramming. In GPCE’02: Pro-
ceedings of the 1st ACM SIGPLAN/SIGSOFT con-
ference on Generative Programming and Compo-
nent Engineering, pages 110–127, Pittsburgh, PA,
USA, 2002. Springer-Verlag.

[CD08] Thomas Cleenewerck and Theo D’Hondt. Modu-
larizing Invasive Aspect Languages. In Cleenew-
erck et al. [CNF+08].

[CN04] Shigeru Chiba and Kiyoshi Nakagawa. Josh: an
open AspectJ-like language. In Gail C. Murphy and
Karl J. Lieberherr, editors, AOSD’04: Proceedings
of the 3rd International Conference on Aspect-
Oriented Software Development, pages 102–111,
New York, NY, USA, 2004. ACM.

[CNF+08] Thomas Cleenewerck, Jacques Noyé, Johan Fabry,
Éric Tanter, and Anne-Françoise Lemeur, editors.
Proceedings of the 3rd Workshop on Domain-
Specific Aspect Languages, ISBN 978-1-60558-
146-0, April 2008. ACM.

[DM97] Wolfgang De Meuter. Monads as a theoretical
foundation for AOP. International Workshop
on Aspect-Oriented Programming at ECOOP’97,
1997. ftp://prog.vub.ac.be/tech report/1997/vub-
prog-tr-97-10.pdf.

[DM08] Tom Dinkelaker and Mira Mezini. Dynamically
Linked Domain-Specific Extensions for Advice
Languages. In Cleenewerck et al. [CNF+08].

[FTD08] Johan Fabry, Éric Tanter, and Theo D’Hondt.
KALA: Kernel aspect language for advanced
transactions. Elsevier Science of Computer
Programming, 71(3):165–180, 2008.

[GBCDM08] Elisa Gonzalez Boix, Thomas Cleenewerk, Jessie
Dedecker, and Wolfgang De Meuter. Towards a
Domain-Specific Aspect Language for Leasing in
Mobile ad hoc Networks. In Cleenewerck et al.
[CNF+08].

[HBA08] Wilke Havinga, Lodewijk Bergmans, and Mehmet
Aksit. Prototyping and composing aspect lan-
guages – using an aspect interpreter framework. In
Proceedings of the 22nd European Conference on
Object-Oriented Programming, ECOOP’08, 2008.

[Lop97] Cristina Videira Lopes. D: A Language Framework
For Distributed Programming. PhD thesis, College
of Computer Science of Northeastern University,
1997.

[MW08] Antoine Marot and Roel Wuyts. A DSL to declare
aspect execution order. In Cleenewerck et al.
[CNF+08].

[SM08] João L. Sobral and Miguel P. Monteiro. A
Domain-Specific Language for Parallel and Grid
Computing. In Cleenewerck et al. [CNF+08].

[TAH08] Stijn Timbermont, Bram Adams, and Michael
Haupt. Towards a DSAL for Object Layout
in Virtual Machines. In Cleenewerck et al.
[CNF+08].

[Wad92] Philip Wadler. Comprehending Monads. Math-
ematical Structures in Computer Science, 2(4),
1992. (Special issue of selected papers from
6th Conference on Lisp and Functional Program-
ming.).

