
A Scalable Log Differencing Visualisation
Applied to COBOL Refactoring

Céline Deknop1,3, Kim Mens1, Alexandre Bergel2, Johan Fabry3, Vadim Zaytsev4
1Université catholique de Louvain, Louvain-la-Neuve, Belgium

2Department of Computer Science (DCC), University of Chile, Santiago, Chile
3Raincode Labs, Brussels, Belgium

4Universiteit Twente, Enschede, The Netherlands

{celine.deknop, kim.mens}@uclouvain.be, abergel@dcc.uchile.cl, johan@raincode.com, vadim@grammarware.net

Abstract—Large code refactoring projects can consist of hun-
dreds of refactoring rules that are applied iteratively to make
code easier to maintain. Visualising the refactoring process
can help engineers and stakeholders understand how chains of
refactorings were applied and to gain more confidence in the
produced result. An apparently suitable existing visualisation
using log-based behavioural differencing suffers from scalability
issues when applied to industrial-size cases. We propose an
adapted visualisation tool that highlights those parts that really
changed in-between iterations of a large refactoring process and
collapses those parts that remain stable. We show that our
alternative visualisation scales well on large logs of a process
with many possible refactoring chains, of which significant parts
are shared. Consequently, it allows engineers and stakeholders to
quickly answer relevant questions about what happened during
the refactoring process.

Index Terms—Differencing, Visualisation, Logs, Refactoring,
COBOL, Scalability, Industrial

I. INTRODUCTION

The discipline of differencing, i.e. analysing changes be-
tween two versions of an artefact, is arguably well known
to anyone working in computer science. To obtain such a
difference, various techniques can be used on different kinds
of inputs. In our context of migrating large codebases to a
more maintainable version, we are interested in visualising
differences between variants of a refactoring process. For
this, we explored the technique of log-based behavioural
differencing, which extracts behavioural information from logs
produced by a process, to then allow for visual inspection of
the differences between two variants of that process. We used
the algorithm and naı̈ve visualisation proposed by Goldstein
et al. [15], and applied it to an industrial refactoring project
and use case from the company Raincode Labs.

Raincode Labs is an independent compiler company that
provides services for migration and modernisation of legacy
systems. To help Raincode engineers compare two variants of
a refactoring process that are configured differently, we applied
Goldstein’s algorithm and visualisation to their logs. The goal
of the visualisation is to provide insights on the effects of
changing the configuration, by highlighting the differences
between the two execution logs. We found that while this naı̈ve
visualisation works well on small examples, it suffers from

scalability issues that make it unsuitable to apply on the actual
logs of an industrial refactoring project. This is due to the large
size of the graphs encountered (up to hundreds of nodes) and
to their specific nature of often extremely long linear chains
of nodes (which are of less interest to the engineers).

On the positive side, the nature of these graphs provides
interesting opportunities for compressing the relevant infor-
mation contained in them. We therefore set out to optimise
the visualisation tool so that it better fits the nature and size
of the graphs, by collapsing less important points (such as the
long chains), using colours to highlight key differences, and
using line and node sizes to indicate the importance of certain
nodes and edges. This paper presents the result of our efforts.

More specifically, the project kind to which we apply our
visualisation is called PACBASE migration [28]. PACBASE is
an aging fourth generation language [38] that allows engineers
to use concise macros to generate COBOL code instead of
developing in COBOL directly. PACBASE support having
ended in 2015, reliance on PACBASE has turned into a
liability for companies. Ideally the language would be retired,
and companies could maintain the generated COBOL code.
Yet, the COBOL code generated by PACBASE is arguably
not readable by humans, and rewriting it from scratch is not
feasible in practice. Raincode’s PACBASE migration refac-
tors PACBASE-generated COBOL code to human-readable
COBOL using a set of refactoring rules that is applies iter-
atively on the codebase (more on this in Section IV).

The exact set of refactoring rules to apply to a COBOL
portfolio is a configuration that has to be determined in collab-
oration with the customer. This task is difficult: there are 140
rules available in total, and understanding their exact effects
and interactions requires expert knowledge that the customer
does not have. We see this difficulty as an opportunity for a
differencing tool to show how a change in the configuration
influences the overall refactoring. To help Raincode engineers
in guiding the customer through the rule-selection phase of
the refactoring project, we developed such a tool to visualise
the influence of activating or deactivating a refactoring rule.

We validated this new visualisation tool by applying it
to an actual PACBASE migration project and verifying that
the produced visualisation indeed highlights the things we

mailto:celine.deknop@uclouvain.be
mailto:kim.mens@uclouvain.be
mailto:abergel@dcc.uchile.cl
mailto:johan@raincode.com
mailto:vadim@grammarware.net
https://www.raincodelabs.com


intend it to, that it remains sufficiently small to be human
readable, and that the algorithm is sufficiently fast to calculate
the visualisation. Finally, we performed a user study with
Raincode engineers to collect feedback on the suitability of
the tool and ideas for future improvements.

To summarise, the main contributions of this paper are:

• the analysis and use of the log-based behavioural dif-
ferencing algorithm of Goldstein et al. [15] and the
highlighting of some of its limitations when applied to
log files of a specific nature;

• an improvement of the visualisation proposed by Gold-
stein et al., by post-processing the output of their log
differencing algorithm to improve the readability of the
visualisation;

• an identification of an industrial scenario of refactoring
large COBOL codebases where this visualisation can
significantly improve practitioners productivity;

• a validation of the visualisation on such an industrial
scenario with industrial practitioners.

The paper is structured as follows. Section II presents the
log-based differencing algorithm of Goldstein et al. and its vi-
sualisation. Section III discusses the limitations of the existing
algorithm and visualisation when applied to our industrial use
case and introduces our improved visualisation. Section IV
validates the work by showing the new visualisation tool
at work and by analysing its adequacy and performance.
Section V discusses related work and Section VI concludes
the paper and presents avenues for future improvements.

II. EXISTING ALGORITHM AND VISUALISATION

In this section we present Goldstein et al.’s work on
log-based behavioural differencing [15] and comment on its
relevance to our industrial use case, before explaining the
algorithm in more detail and showing its results.

A. Motivation

Since Raincode engineers wish to help their customers
understand why they should or should not pick a certain
refactoring rule, we want to offer a tool that supports the
analysis of different variants of the refactoring process, in
order to gain more insights on what and why changes occur
when activating or deactivating a rule. While many tools exist
to compare versions of code artifacts, we want to focus on
understanding the evolution of the migration itself through its
logs.

With that in mind, we took interest in Goldstein et al.’s
log-based behavioural differencing algorithm [15]. The goal
of this algorithm is to highlight changes in two (consecutive)
executions of a process. If p1 and p2 are two log files
representing a process, the result of the differencing algorithm
applied to p1 and p2 answers the following questions:

• What step(s), if any, happened in p1 but not in p2?
• What step(s), if any, happened in p2 but not in p1?
• What step(s) are common to p1 and p2?

• How has the execution of p2 changed with respect to p1,
i.e. are some steps present in p1 happening more or less
often in p2?

The goal of this algorithm is to provide a clear represen-
tation of the changes between two executions and to identify
some of those changes as symptoms of issues or bugs. To
support the idea of finding problem-inducing changes, the first
execution p1 is assumed to be a known normal, stable or bug-
free version; while p2 has not yet been cleared as correct and
needs to be analyzed.

For example, in the context of analysing the use of an online
store, p1 could represent an old version of the website, while
p2 would represent a new version with more modern features.
The goal of the differencing algorithm is then to highlight what
new paths the client is following. This could then be analysed
to find out if the navigation is still clear.

The proposed approach takes textual log messages repre-
senting the behaviour of p1 and p2 and turns each into a
Finite-State Automaton (FSA). The two resulting automata are
then compared with the differencing algorithm, and changes
are highlighted using a visual representation.

In our industrial setting, we apply this algorithm to visualise
differences in how and when refactoring rules were applied
before (p1) and after (p2) a change to the rule set, thus giving
insights in how or why a change affected the refactored files.

B. Log-based behavioural differencing

The first step of Goldstein et al.’s method is to extract FSA
models from the logs. This is done in two phases: normalising
the logs and extracting relevant information from them.

The content of logs can vary immensely from one process to
another: they can contain debug messages, errors, timestamps,
hardware information, etc. It is important to think carefully
about what exactly we want to visualise. Differentiating
relevant information from uninteresting information requires
expertise and manual effort.

Reconsider the previous example of logs from an online
store. They can contain debug messages, information about
the clients (language preference, country, . . . ) and navigation
details such as the pages and products visited. Each log line
has a timestamp. We want to analyse the flow of the website
to see what pages or products are visited most by clients, if
clients get stuck anywhere because of a bad design, as well as
make sure that page loading times are within expected limits.

Reaching this goal is possible by using only the part of the
logs that contain the timestamps and the page visits, while
dropping the rest of the data to ensure having the simplest
possible model. Figure 1 shows a truncated example of the
normalised log files obtained this way.

FSA models are then extracted from these normalised logs
using the kTails [8] algorithm1. Many tools applying this
algorithm already exist, and Goldstein et al. chose Perfume [6]
for its relatively concise output. The tool takes a normalised

1A detailed discussion of what kTails is and why it was chosen can be
found in Goldstein et al.’s paper [15] .



Creditentials Page 13:53:37.281
LoggedIn Homepage 13:54:27.841
Search Page 13:55:02.182
AddItem Page 13:55:57.283
...
Checkout Page 14:15:29.724
Logout Page 14:16::37.528

(a) Log file p1

Creditentials Page 10:32:02.356
PswReset Page 10:33:05.628
LoggedIn Homepage 10:35:18.724
Search Page 10:35:02.827
AddItem Page 10:36:03.924
...
Logout Page 10:50:12.656

(b) Log file p2

Fig. 1: Log files for two executions of the shopping process,
example from [15]

log as input, and calculates the corresponding Finite State
Automaton, outputting it to a file in the standard .dot format
accepted by Graphviz [18]. The file representing a FSA is
simply a list of node IDs and their labels, followed by a list
of edges between those nodes, which allows one to easily
recreate a graph representing the extracted behaviour.

Figure 2 shows a graphical example of such a FSA for each
of the two logs of our shopping cart example. The first word
on each log line is used as node ID, subsequent lines represent
transitions from one node to a next one, and the timestamps
are used to calculate the time required to perform a transition.
If this time varies, minimum and maximum values are shown
using brackets. This execution time can be seen on the edges,
before the semicolon. After the semicolon we see the transition
probability, i.e. the probability to go from the start node to the
target node the edge points to.

(a) FSA for log file p1 (b) FSA for log file p2

Fig. 2: FSA graph representation of both logs to compare

Once both FSA models have been calculated, we can

compute the difference between them. The idea is as follows:
we want to keep all nodes from both models (marked either as
common, added or removed), but not all edges, since otherwise
most of them would be duplicated. We do keep all edges from
the second model, to highlight how things changed, while
keeping only some from the first model. All edges are still
adorned with the metadata, edited to show the evolution in
execution time and transition probabilities.

We now describe a simplified version of the algorithm
used to compute the difference between two FSA models,
redirecting to Goldstein et al. [15] for details. First, the
common paths starting from the initial node and ending at the
terminal node are computed. A path is common between two
models if all of its nodes have the exact same label. Common
nodes are defined as those having the same label and being
part of at least one common path. There is also a special case:
a node is considered common if it has a label that is unique
to its model and happens in both compared models. In our
online store example, all nodes labels are unique for each
model (no nodes are duplicated), but the nodes PwdReset
and Checkout are not present in both models, and therefore
not common. Added nodes are nodes that are present in the
second model and not common, while removed nodes are
present in the first model but not in the set of common nodes.
The diff contains all the common, added and removed nodes,
along with all the edges from the second model, and the edges
from the first model that connect the removed nodes to the rest
of the graph.

C. Visualisation

The last step is to generate the visualisation. As shown
in Figure 3, Goldstein et al.’s visualisation stays relatively
close to the Graphviz images of the input FSA models. Nodes
are differentiated by their border style: common nodes have
solid borders, removed nodes have a dashed border and added
nodes a double solid border. The edge label keeps the same
structure with the execution time, a semicolon and then the
transition probability; however, it now shows the evolution of
these values denoted by an arrow from the old value to the
new one. Consider for example the edge from node AddItem
to Search, we can see that the execution time went from 5
in p1 to a value ranging between 4 and 7 in p2, and that the
transition probability increased from 0.1 to 0.8.

III. APPLICATION OF THE ALGORITHM TO OUR
INDUSTRIAL CASE

A. Direct application

To apply the algorithm described in Section II to our
industrial setting, the first step is to decide what to extract
from the available logs. Since we are interested in modeling
and understanding the refactoring process itself, we filter out
any errors or warnings from the logs, and from the other log
lines we simply keep the name of the refactoring rule that got
triggered. We discard the idea of keeping track of the transition
times, since an analysis of the time needed for a refactoring is



Fig. 3: Result of log differencing for the shopping process

something that is already available internally at Raincode but
very rarely used in practice.

To create the FSAs, we followed the method of Goldstein et
al. and found a tool based on the kTails algorithm. By 2021,
Perfume has become abandoned and impossible to run, so we
used a substitute called Synoptic [7], created by the same team.
With our FSA models generated, we then reimplemented the
model differencing algorithm described in the previous section
using Pharo [4], [27]. The latter choice was mainly motivated
by its companion visualisation framework Roassal [3], [5].

Concerning visualisation, we stayed relatively close to what
was proposed in Goldstein et al.’s original paper (as shown
in Figure 3), with nodes representing rules linked together
by arrows representing the probability to execute one rule
after the next one. We use colour rather than line style to
differentiate the status of the nodes, following the usual colour
code of red/orange/green for a removed/modified/added rule
execution, respectively. To ease readability, we visualise prob-
ability changes with line thickness. This removes cluttering
text from the view while allowing for seeing the exact value
of the probability via mouse hover.

The visualisation resulting from this implementation is
shown in Figure 4. In order to be able to show all the nodes on
a single image, thus giving an overall impression of the total
size of the resulting graph, we used a force-based layout2.
This layout differs from the linear layout used by Goldstein
et al. which is arguably more readable as it follows a natural
top-to-bottom reading path, but would not scale up to these
size of graphs as it would not fit on a single page or screen.

Note that, while this paper is focused on our PACBASE mi-
gration use case, any process (industrial or not) that produces
logs and needs to be analysed can benefit from the application
of this technique. Seeing exactly how the execution is evolv-
ing when given different outputs or different configurations

2The Roassal visualisation framework is sufficiently versatile to try several
other layouts, but none was entirely satisfactory due to the graph size.

Fig. 4: First differencing output for one program

could be useful in the contexts of finding bugs, maintaining,
optimising or understanding the inner working of said process.

B. Limitations of the visualisation

It becomes clear from looking at Figure 4, that our data
seems to be of a different nature than what was presented by
Goldstein et al. [15]. First, due to the iterative nature of the
refactoring process, our graphs are sparsely connected, with
very few or very small cycles. They are also considerably
larger than the ones depicted by Goldstein et al. With a subset
of the 140 available refactoring rules that can be triggered
multiple times, even when simplified into an automaton, our
average output graph contains around 120 nodes.

While the nature of our graphs was not an obstacle to the
execution of the algorithm in terms of processing time, their
size made them overwhelming and hard to interpret visually,
forcing a user to scroll through a zoomed-in version and thus
quickly lose the bigger picture.

When analysing the nature of the graphs produced for our
industrial case, to see how they could be improved, we made
two important observations. First, our graphs are extremely
linear, often displaying long chains of nodes connected by a
single edge with a transition probability of 1, or several edges
with no changes in the transition probabilities, e.g, as shown
in Figure 5. Again, this is caused by the iterative step-by-
step nature of the refactoring process: all rules were created
with this process in mind, refactoring the code by a small step
every time one rule is applied. In some cases the previous rule
prepares the code for a next rule, which means that we can
expect to see sets of rules being applied in a specific order.
While this is an interesting finding, those fine-grained rules
do not provide a high-level understanding of what changed in



Fig. 5: A chain of nodes with no changes in the transition
probabilities

the overall migration yet they take up most of the space on
the graph.

The second peculiarity we noticed is that changes often
tend to happen in clusters. We identified two kinds of such
clusters. Either a (few) new rule(s) are triggered or a (few) old
one(s) are not appearing anymore, after which the execution
trace returns back to its mostly linear nature, as shown as an
example in Figure 6a. The second kind of change, like the
one depicted in Figure 6b, is more complex. It presents itself
as a cluster of highly connected nodes with mostly transition
probability changes, along with a few added or removed nodes
and edges, after which the graph again goes back to its linear
execution as described previously. In both cases, these clusters
are precisely the kind of structures we would like to be
highlighted when looking at our visualisation.

C. Adapting the visualisation

Based on these observations, we decided to address the read-
ability issue by creating a merge algorithm to apply after the
computation of the original differencing algorithm. The merge
will collapse long ‘unimportant’ chains into single nodes,
causing more interesting clusters of changes (as described
above) to become more prominently present. The algorithm
is quite simple, and applied iteratively throughout the graph
until there are no valid nodes left to merge. Two linked nodes
are merged if they fit the following criteria:

• Both nodes are common (neither added or removed, i.e.
not in green or red);

• No transition edge from or to those nodes is added or
removed;

• No transition edge to or from those nodes has seen
a probability change between the two variants of the
process (i.e. in orange).

Since we are using graphs, the merge algorithm can be
defined recursively as follows:

merge(graph){
do {

// Keep track of whether or not we merged
beingMerged = false
// Keep track of visited nodes
visitedNodes = new Array()
// Start at the top
mergeRec(graph.initialNode(), visitedNodes)

} while(beingMerged)
}

mergeRec(currentNode, visitedNodes){
// Merge anything that we can in the current node

Fig. 6: Two types of clustered changes

(a) An old rule being removed, then return to previous execution

(b) Cluster of modifications concerning the removal of GO TOs

foreach(child : currentNode.children()){
if(canMerge(currentNode, child)){

mergeNodes(currentNode, child)
beingMerged = true

}
}
//Add the current node to the visited ones
visitedNodes.add(currentNode)
foreach(child : currentNode.children()){

if(child not in visitedNodes){
//Recursively go through each unexplored node
mergeRec(child, visitedNode)

}
}

}

The merge conditions ensure that no key insight will be
hidden from the user when looking at the resulting graph,
while minimising the amount of information shown at once.
For example, all nodes in Figure 5 would be collapsed into one
single merged node, while only the two last nodes of Figure 6a
would be merged, leaving the Simplifying perform thru node
visible because it is has two incoming links: one removed and
the other added.

Recall the initial example of Figure 3: our algorithm would
not merge a single node in that graph, since each node is either
connected to an added or removed node, or one of its edges
has seen a probability change.

We decided to differentiate the merged nodes visually by
showing them in gray rather than the white for the other
common nodes. As label, we simply give them a number
describing how many nodes were collapsed into them, and
show that label inside the node rather than under it. Finally, a
merged node’s size is proportional to the amount of nodes it
contains, enabling a more “at-a-glance” analysis.

Our merging algorithm helped us shrink the graph from
an average of 120 to 30 nodes (more in-depths metrics are



presented in Section IV). As described, only plain white
unchanged nodes were merged, and they still appear if they
are linked to a change, allowing a user to look for the context
or result of a modification. If needed, a merged node’s internal
details can still be inspected in a new window when clicking
on it. As an example, the result of our merging algorithm on
the graph of Figure 4 can be seen in Figure 7.

IV. VALIDATION

In this section we first detail the process of a migration
project at Raincode. We then present a few metrics regarding
the results produced by our visualisation tool. Second, we
analyse the execution time of the model creation and the
differencing and merge algorithms. Third, we discuss the size
of the input logs and graphs and compare the size of the
resulting graphs, for both the original and merged graphs.
Fourth, we present how we validated our visualisation tool
with two Raincode engineers involved in PACBASE migration
projects, and analyse the results of this user study.

A. Migration projects at Raincode

A detailed description of the different steps of a PACBASE
migration project is given by Deknop and al. [11]. The
migration is performed by iteratively applying a set of rules,
each refactoring the code just a bit, until none can be applied
and the code is fully transformed

Even though Raincode has a basic “one size fits all” con-
figuration of rules, their customers often prefer a personalised
experience. The first step of a migration project is thus to pick
and choose the exact set of refactoring rules that will be used
to transform their code. The engineers present the different
rules to the customer, who can choose to activate them or not.
Since a plain description of a rule is often too abstract for
the customer, a small portion (around 30) of the customer’s
programs is used as an example on which the effect of the rules
is demonstrated. The chosen set of rules is applied to these
programs, and the output is presented to the customer so that
they can verify if the refactored results fit their company’s
standards. A few iterations of this may occur, adding and
removing rules until the customer is fully satisfied.

Once the set of rules has been chosen, a second prelim-
inary step starts: the customer has to be convinced that the
refactoring process is safe and will not introduce any bug. For
this, Raincode creates an illustrative subset of the refactored
files so that all the rules that got triggered during the complete
process are represented. Note that some rules selected by the
customer might not have been triggered at all, simply because
their preconditions were never met. The customer then tests
these files thoroughly to ensure that the refactoring rules did
not break anything.

After this, the project enters the main refactoring phase
where all artifacts to be transformed are sent to Raincode,
pre-analysed and processed. This phase takes on average two
weeks and is concluded by a delivery. During this time,
the customer may keep using PACBASE to edit some of

the files that are being refactored. When receiving the trans-
formed codebase, the customer would then want the additional
changes they made in parallel to be integrated as well.

This triggers a new phase of the migration project, called a
redelivery. The customer sends to Raincode the new versions
of the files that have been edited so that they can be refactored
as well. Again, the files are pre-analysed, processed and sent
over. This last step is repeated as many times as needed.

B. Use of the visualisation tool during the migration process

We identified two steps in the migration project where we
believed that our visualisation tool would be useful: during the
very first rule-selection step, as well as during redelivery. We
expand only on the first use case here for brevity.

The goal of this first step is for the customer to tailor the
refactoring rules to their preference and company’s coding
style. When presented with all the rules, they will consider
some rules as absolutely necessary while feeling less strong
about others. It is the role of Raincode’s engineers to help
guide the customer’s choices. However, while a rule’s draw-
backs or benefits can be clear by looking at it in isolation, it
is harder to assess the impact of a rule in the context of a full
migration, when combined with many other rules.

The refactoring process being iterative in nature, the execu-
tion of a rule A might be a precondition for a rule B to be fired.
Deactivating rule A could thus essentially deactivate rule B as
well: even though it is still in the chosen set, it might never get
triggered during the process. While the relationships between
some rules are fairly clear, even for Raincode engineers it is
impossible to predict all interactions between all 140 rules.
This can be problematic if a customer really wants a specific
rule to be executed, without realising that changes to other
rules might affect it, thus failing to understand why the rule
is no longer executed.

This is where our visualisation tool comes in: the idea is to
take the logs of two variants of the process on the small set of
programs, each variant using a slightly modified set of selected
rules. Armed with the diff graphs along with the knowledge
of what changed in the rule-set between the two variants, the
customer can better visualise the possible effect of the changes
made to the rule-set. For example, it would be directly visible
if the removal of one rule had an impact that was bigger than
expected. With this knowledge, the customer can then make a
more informed decision about what modifications to make next
to the set of selected rules. The tool helps Raincode engineers
in their guidance by giving them a more visual support, but
also because it can provide them with concrete examples of
why a rule should be left activated (or not) when it has a high
impact on other rules or even on the entire migration process.

C. Metrics

Since Raincode did not have an ongoing migration project
at the time of writing, we had little or no data from the
rule selection step available. Therefore, the metrics of our
algorithm shown in this section were applied to the redelivery
step instead.



Fig. 7: Adapted visualisation after merging nodes, for the same input as Figure 4

Goldstein et al. stated that the creation of the .dot FSA
models is the most time-consuming step of their algorithm.
With normalised logs (see Section II) containing hundreds of
nodes, Synoptic can take hours to generate the corresponding
models on an Intel i7-9750H processor with 16GB of RAM,
requiring around 20 hours to compute the models for both
versions of 39 migration logs of an example redelivery. Note
that this model-generation step would require companies to
have a server that can run the script outside of office hours
for more efficiency (Raincode does have suitable machines).

Once the models have been created, the time required to
obtain the diff graph is minimal: on the same processor,
calculating output graphs for our example redelivery of 39
files takes only 0.77 second, with only an additional 0.58
second needed to apply the merge algorithm, increasing the
total execution time to 1.35 second in that case.

Regarding scalability, the model-creation step could become
a bottleneck because its execution time and memory consump-
tion grows superlinear with input size. With our biggest log of
almost 800 lines, we need 12 out of the 16 GB of memory of
the machine we used. Therefore, to scale up even more than
what we have now (which was sufficient for the industrial case
at hand), we would need to create a more efficient model-
creation tool, instead of reusing the existing solution.

In terms of size, the transformation to FSA models already
shrinks the logs quite a bit: we go from an average of 282
lines (see Table I) to only 119 nodes in our input graphs.

Log lines Graph nodes
Mean 282 119
Min 72 61
Max 779 198

TABLE I: Size of inputs (logs and graphs) for all 39 programs

Applying the differencing algorithm to show information
from both variants of the process increases the amount of
nodes by just a bit, from an average of 119 to one of 123. As
illustrated by Figure 4, this amount of nodes is overwhelming

to be visually analyzed. The second column of Table II shows
the improvements gained by the merge algorithm.

Full graphs Merged graphs
Mean 123 33
Min 74 1
Max 201 80

TABLE II: Graph size in nodes

Merging reduces the average amount of nodes by around
75%, resulting in much more readable graphs. The minimum
graph size consisting of a single merged node is also an inter-
esting find. In fact, this file slipped through the first analysis
of the engineers: it was refactored even though it had not
changed. This explains the single merged node representing
no changes.

D. Interview with the engineers

Given the size and style of the company, only two persons
are working on PACBASE migration at Raincode. One of them
is more customer-oriented, having as main responsibility to
assist in sales and to accompany customers in the first step
of selecting the refactoring rules. The second person is more
technical and the main developer of the entire refactoring
process. For our validation, we interviewed both engineers,
resulting in varying answers due to their different focus and
background. In the remainder of the text, we will refer to them
as participants PC and PT respectively, for customer- and
technical-oriented. In what follows we will first present our
validation methodology, then discuss the different points on
which both engineers agreed, followed by the ones on which
they have a diverging opinion.

1) Interview set-up: Since we had only two engineers avail-
able for our study, we conducted a semi-structured interview
with each of them individually (a full interview taking around
45 minutes).3 Before the interview, they received a one-page
manual describing each component in our visualisation tool

3Due to restrictions imposed by the COVID-19 pandemic, we necessarily
had to conduct the interviews virtually using screen sharing.



and its meaning. The engineers could refer to this manual at
any time during the meeting. During the interview, we first
showed them our tool and let them explore it for a bit (PC : 6
minutes; PT : 5 minutes), while answering any questions they
had regarding the use of the tool or the inputs it takes. Once
they got situated, we asked them to give us their interpretation
of the graphs they were shown. We then had a semi-structured
discussion with them, driven by a set of guiding questions that
we prepared beforehand. We included some open questions to
provide them the space to present us their own suggestions
along with their opinions. Our accompanying repository [12]
contains the manual that we presented to the engineers, our
list of guiding questions to structure the interviews, along with
our analysis of the reactions and answers of the engineers.

2) Methodology: To structure the presentation of our re-
sults, we took inspiration from the work of Sillito et al. [29]. In
addition to examining the participants’ remarks and answers to
our questions, we also analysed the questions they were asking
themselves while thinking out loud. We wanted to study not
only their opinions on the tool, but also how well our tool
supports the actions they had to perform for the tasks we gave
them. We classified these questions in four categories:

• Questions about the domain (input, output, inner repre-
sentation of data in the tool);

• Questions about tool usage (often the starting point of a
series of concrete actions they undertook to answer that
question, without requiring further help from us);

• Questions about the meaning of a visual component (they
either asked us directly or used the one page manual to
look for the response);

• Questions leading to ideas for future work (when they
asked if some feature would be possible to implement).

We adopted this question-oriented format for three reasons.
First, we wanted to get as much feedback as possible from
our two users, hence the open questions. Second, we wanted
to highlight the strong and weak points of our tool: what
part of the interface is so intuitive that it does not raise any
questions? What part is less easy to understand (gives rise
to more questions) and would thus require improvement of
the tool or better training? Finally, to validate if our merging
algorithm is an improvement over the non-merged graphs we
asked them direct questions about this aspect.

3) Results of the study: Due to space considerations, we
cannot include all results of the study in this text. We refer
to the file InterviewCommonQuestions.csv in our
accompanying repository [12] for all questions highlighted in
the following descriptions. We limit ourselves to presenting
the most significant items here.

a) Domain: There were only a few questions in this
category, yet they were quite specific and common to both
participants. Both of them asked: “What does this tool take as
input?” and “Can a node be repeated in the graph?”

b) Tool usage: Since we asked the engineers to think
aloud while exploring the tool, questions regarding tool usage
were the most common. This category of questions showed
us that the most performed actions were moving nodes and

zooming into the graphs. Every time any of our engineers
opened a new graph, their first reaction was to zoom in,
then sometimes move nodes. Those actions were translated
by questions like “How can I see/arrange this better?”

c) Meaning: The second-most frequent category of ques-
tions was about the meaning of specific visual components.
Two questions were common to both participants: “Can you
clarify the meaning of the orange/gray nodes?”

d) Future work: Both participants provided concrete
ideas about where in the migration process they would apply
our tool, gave a few suggestions about our layouts, and
presented at least one proposal for new features.

e) Open questions: For the open questions we asked our
participants, we were mostly interested in knowing whether
they perceived our merged graphs as more useful than the full
graphs. For this, the participants were requested to open a
non-merged version of a graph of which they had previously
analysed the merged version. We then asked them questions
regarding the similarity and differences of the information
shown in this graph with respect to the previous one.

4) Analysis of the results:
a) Domain: A first thing that we observed is the fact

that the engineers did not pose many domain questions. This
is not surprising since they have been working on PACBASE
migration projects for over 15 years and therefore are experts
in this domain.

This is confirmed by the fact that they both asked the
same detailed domain-question very early during the interview.
Indeed, both participants are used to work with and look at
the logs, and wanted to know exactly what parts of it we
selected before proceeding with the analysis we asked them to
perform. Once they had this information, they had no trouble
recognising the things they are so used to work with.

Still concerning the domain, both engineers asked us if it
was possible to have a node repeated in a graph. Both of them
seemed to have trouble visualising and understanding that.
They felt it might be confusing for an end user. PT said that “it
would be less useful that way”. Having no concrete example
of a graph with a repeated node at hand during the interview,
it was impossible for us to show them and get further feedback
on this issue. We keep this in mind for future work: while we
feel that a repeated node should not threaten the usability of
our graphs, we should test this further. It may be necessary to
adapt the visualisation so that repeated nodes occur together,
and analyse whether that yields a better visualisation or not.

b) Tool usage: We observed that the most performed
actions were moving nodes and zooming into the graphs. This
may suggest that despite our merge algorithm, the generated
graphs are still not easy to analyse to understand “at a glance”,
requiring engineers to zoom in on a specific section at a time,
then move over to the next one. Their systematic moving
around of the nodes may also suggest that the default layout
we chose might not be ideal for this specific use case.

However, when asked about this, the engineers as-
sured us that, while the overall placement of the nodes
was certainly not perfect, the tool itself remained usable.



Moreover, some of the layout issues were due to the
length of the labels of the nodes, and are inherent to
Raincode’s use case. For example, a particularly lengthy
and fairly common label is IfThenElseGotoRemoval
deletedgoto=FALSE. This label-length issue could easily
be fine-tuned by changing the logs themselves, and is some-
thing that the engineers would be willing to do when using
our tool on a regular basis.

c) Meaning: Questions regarding the meaning of visual
components arose mostly at the beginning of the interview,
when the engineers were still unfamiliar with the visualisa-
tion or unsure about how to do something. Yet they were
able to answer most, though not all, of those questions by
themselves by referring to the one-page manual we provided.
This means that the most unclear components should probably
be explained better when presenting the tool to new users.
We found that the meaning of the orange links is the least
easy to understand. This is probably because its description
in the manual remains too high level, referencing to varying
probabilities, causing both engineers to need clarification of
this description. Second, the use of the gray nodes might not
be very intuitive either: one engineer did not click on it to
open the inside representation, and the second one needed us
to tell him how to do so, even though it is mentioned in the
manual.

d) Future work: As described previously, the selection
of what to keep from the logs is critical to have useful
outputs. In this case, we chose to keep only the rules names,
which seemed sufficient to the engineers. We also choose to
focus on the most fine-grained level of the logs, while we
could summarise some of the information and present the
visualisation on another level of detail. This was not done due
to time constraints, but was noted as something that could
interest PC . Another round of interviews on a more coarse-
grained level would have been useful to compare which level
would be more suited for which analysis, or simply preferred
by the participants.

As for feature requests, we want to highlight two that
seemed quite interesting. PC would like to have, attached to a
merged node, details on where in the process changes start to
happen. For example, he would want a label on the right-hand
side of the node, noting that he can look at log line number 42.
PT had a simpler request: he would like to highlight a node
that is new to a file. For example, if rule A was not triggered
in the first execution of the migration but is in the next, he
would like it to be not in green for ”added”, but in yellow for
“added and new to this file”.

e) Open questions: We focus here on the comparison be-
tween the non-merged and merged graphs. When shown a non-
merged version of a merged graph they had analysed before,
we asked the engineers if, at a first glance, this was something
they saw previously. Both of them said they thought they
recognised it, though without certainty. We then confirmed
that it was indeed the same thing, visualised differently, and
asked them if they could find the same information as was
presented in the previous graph they analysed before. They

agreed that they could but that it would take them longer. PC

stated “Yes, I could find the same information, but I don’t
really care about all those white nodes, they don’t give me any
interesting information”. PT disagreed that the white nodes
were uninteresting. He liked the idea of being able to look at
a broader context if needed, but did agree that this did not
necessarily require the full graph, instead having the option
of opening the inside of a merged node would be sufficient
for his needs. When asked if they thought that the merged
graphs were an improvement over the non-merged ones, they
both agreed that the merged graphs were a strict improvement.
They also said that no features from unmerged graphs would
be missed.

5) Conclusions: To conclude, we observed that, even if
they had fairly different points of view due to their back-
ground, both engineers used the tool in a very similar fashion
(excluding idiosyncrasies of who prefers scrolling and who
prefers dragging): when presented with our visualisation, they
look at the graph from left to right, stopping on clusters of
change and guessing at what might have caused that change.
It is in their interpretation of the changes that they differ: PC

views everything in terms of “what did the customer do to
initiate this change?”, while PT goes directly to reflecting on
the interaction between the refactoring rules themselves.

Because of those different inclinations, they also have a
different idea of how they would use our tool. PC , due to
his very frequent interactions with the customer, wishes to
use it as an aid in a conversation to convince his customer
or to help him understand why a rule should be picked over
another. He does not, however, see how the tool could be used
in the context of working on the refactoring process itself. PT

however, said that our visualisation might help him when he
is maintaining the rules and the process: he would like to
see if the changes he made to a refactoring rule influence the
execution of others, this to ensure nothing gets obsolete.

This suggests that our tool is quite versatile: depending on
the inclination of the person who is looking at it, it can prove
useful in several different ways.

Finally, we want to note that our merge algorithm seems
satisfactory: neither of our participants missed any information
from the previous graphs, and both agreed that they would
rather work only with the merged graphs.

V. RELATED WORK

The visualisation proposed in this paper was based on Gold-
stein’s log-based behavioural differencing algorithm. Other
papers presenting algorithms that perform differencing in
specialised or advanced ways, though a rare find, still exist.
The one closest to our current interest is Kim and Notkin’s
LSdiff [20] (Logical Structural DIFFerencing), an approach
aiming at representing structural changes in a very concise
manner, focusing on allowing the developer to understand the
semantics of the changes. However, that approach seems more
suited for object-oriented code, and less for our COBOL use
case. Other approaches exist that focus on the object-oriented
paradigm, such as cal-cDiff [2] and Diff-CatchUp [36].



Other tools like REdiffs [17] or Ref-Finder [19] focus on
untangling changes due to refactoring from other changes
made to functionalities. Whereas such tools could prove useful
in the context of analysing a redelivery, in our industrial
migration process it would require explicitly encoding all
140 possible refactoring rules and maintain the tool as they
evolve. Our approach, in contrast, is agnostic of the particular
refactoring rules as it looks at the logs only.

Since we are not differencing code but models, we also
took interest in work happening in the software modelling
community, and studied tools that perform clear and efficient
differencing on specific kinds of models. Many of those
exist for widely-used models like UML (e.g., UMLDiff [35]),
activity diagrams (e.g., ADDiff [25]) or feature models (e.g.,
in FAMILIAR [1], [32]). Witnessing the abundance of many
different tools for each kind of model, Zhenchang Xing [34]
also proposed an approach to allow for a more generic way to
difference models. Here again, most tools focus on the object
oriented paradigm, though we did take inspiration from the
different visualisations these propose.

We also explored different techniques used when perform-
ing data differencing. From the starting point of the Hunt-
McIlroy algorithm treating simple text, to its extension to
treat binary data [33] when there is need of differencing
more heterogeneous artefacts. Afterwards, many different and
modern techniques were developed, including those based on
control flow graphs [21], program dependence graphs [16] and
other tools making use of ASTs or at least parse trees as with
GumTree [13] or cdiff [37]. We are also exploring the idea of
enriching the initial data format with infrastructures such as
srcML, and how it can be applied to differencing [24] using
its corresponding tool srcDiff [10], [31]. While we agree that
some of those techniques could be useful in the next stages
of this research project, in this paper we wanted to focus on
the logs to provide new insights to the users of our tool.

There is some work on log differencing as such, mostly
focused on business processes or on relating actual log
entries to logging code that produced them: Li et al [23]
have investigated log diffing with the intention to detect
unwanted duplicate log messages, such as those stemming
from cloning logging code without appropriate adjustments.
They detected 5 different patterns of harmful log message
clones, and developed a tool called DLFinder [22]. Gholamian
and Ward [14] developed another tool, Log-Aware Code Clone
Detector (LACC), that is capable of differencing two code
fragments and predicting the location of a log point in one
version based on the existence of a log point within another
version. Tama and Comuzzi [30] have tried using 20 different
classifiers to analyse logs in order to build models to predict
next events by looking at their history. Perhaps the closest to
ours is the paper by Bolt et al. [9], where the tool ProM was
written with the goal of comparing two processes based on
their event logs, and producing concise results. There are more
examples like this in the domain of process mining, such as the
work on differential perspective graphs [26] which in software
engineering would be analogous to grammatical inference.

Since Goldstein’s work came closest to what we needed, we
decided to build our own visualisation on top of that algorithm.

VI. CONCLUSION

In this paper, we presented an improvement to an existing al-
gorithm to perform log-based behavioural differencing [15], in
order to improve its scalability. This is because when applying
the original algorithm to an industrial refactoring process, we
found significant limitations in the original visualisation. To
overcome those limitations, we extended the algorithm with
a merging phase and implemented a new visualisation. We
then validated that log-based behavioural differencing could
indeed be applied to our industrial use case and that our merge
algorithm is an improvement on the output from the original
algorithm. Our extension is compatible with any textual logs,
just as the original. However, to benefit the most of our
merging algorithm, the logs need to be of a significant size
and the process itself needs to have many possible executions
chains: it should be able divert for a bit then join again later,
in order to create the clusters of changes we described.

Our improved algorithm reduces the output size of the
original algorithm by 75%. This allows for an easier analysis,
while not hiding any information to the user, as confirmed
by both industrial participants of our user study. Regarding
efficiency, our algorithm adds only a minimal overhead to the
computation time: for our industrial case of 39 logs of around
282 lines each, the original algorithm takes 0.77 seconds and
our extension adds 0.58 seconds. This is assuming that the
FSAs models have already been generated (our extension did
not impact the generation of those models).

The industrial user study confirmed that both participants
would be interested to use our tool in their specific context:
respectively for explanation support and for debugging during
an industrial COBOL migration project. Moreover, they con-
firmed that the tool might prove useful and that it provides
them new insights they cannot get otherwise.

For future work, the next step would be fine-tuning of the
layout, as well as having a more user-friendly interface for the
creation of the models and the differencing itself. We would
also like to conduct another round of validation using more
coarse-grained information that can be found in Raincode’s
logs. Finally, more validation with a higher number of par-
ticipants and on other processes (like our online shopping
example, or other examples such as traffic navigation) could
help validate on what kinds of processes our tool is most
useful.

ACKNOWLEDGEMENTS

We thank Raincode Labs for its support and Raincode’s migration en-
gineers Yannick Barthol and Boris Pereira for their collaboration as our
validation subjects. We also thank Innoviris the research funding agency of
the Brussels-Capital Region, for providing the funds necessary to conduct
our CodeDiffNG Applied PhD research project. We are also grateful to
Lam Research and the ANID FONDECYT Regular 1200067 for partially
sponsoring the work presented in this paper. Final thanks go out to Benoı̂t
Duhoux for proofreading this paper.

https://www.raincodelabs.com/
https://www.raincode.com/
https://innoviris.brussels/
http://grammarware.github.io/codediffng/


REFERENCES

[1] M. Acher, P. Heymans, P. Collet, C. Quinton, P. Lahire, and P. Merle,
“Feature Model Differences,” in Proceedings of the 24th International
Conference on Advanced Information Systems Engineering (CAiSE), ser.
LNCS, vol. 7328. Springer, 2012, pp. 629–645, DOI: 10.1007/978-3-
642-31095-9 41.

[2] T. Apiwattanapong, A. Orso, and M. J. Harrold, “A Differencing
Algorithm for Object-Oriented Programs,” in Proceedings of the 19th
IEEE International Conference on Automated Software Engineering
(ASE). IEEE, 2004, p. 2–13, DOI: 10.5555/1025115.1025202.

[3] A. Bergel, Agile Visualization. LULU Press, 2016. [Online]. Available:
http://AgileVisualization.com

[4] A. Bergel, D. Cassou, S. Ducasse, and J. Laval, Deep Into
Pharo. Square Bracket Associates, 2013. [Online]. Available:
http://books.pharo.org/deep-into-pharo/

[5] A. Bergel et al., “Roassal homepage,” Online: http://agilevisualization.
com/, 2021.

[6] I. Beschastnikh et al., “Perfume frontend GitHub,” Online: https://github.
com/ModelInference/perfume-frontend, 2021.

[7] ——, “Synoptic GitHub page,” Online: https://github.com/
ModelInference/synoptic, 2021.

[8] A. W. Biermann and J. A. Feldman, “On the Synthesis of Finite-
State Machines from Samples of Their Behavior,” IEEE Transac-
tions on Computers, vol. C-21, no. 6, pp. 592–597, 1972, DOI:
10.1109/TC.1972.5009015.

[9] A. Bolt, M. de Leoni, and W. M. van der Aalst, “Process Variant
Comparison: Using Event Logs to Detect Differences in Behavior and
Business Rules,” Information Systems (selected papers from CAiSE
2016), vol. 74, pp. 53–66, 2018, DOI: 10.1016/j.is.2017.12.006.

[10] M. Decker, M. Collard, L. Volkert, and J. Maletic, “srcDiff: A Syntactic
Differencing Approach to Improve the Understandability of Deltas,”
Journal of Software: Evolution and Process, vol. 32, no. 4, p. e2226,
10 2019, DOI: 10.1002/smr.2226.

[11] C. Deknop, J. Fabry, K. Mens, and V. Zaytsev, “Improving Software
Modernisation Process by Differencing Migration Logs,” in Proceedings
of the 21st International Conference on Product-Focused Software Pro-
cess Improvement (PROFES), M. Morisio, M. Torchiano, and A. Jedl-
itschka, Eds. Springer, 2020, pp. 270–286, DOI: 10.1007/978-3-030-
64148-1 17.

[12] C. Deknop, “Validation data on github,” Online: https://github.com/
CelineDknp/PACBASEValidationData, 2021.

[13] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-Grained and Accurate Source Code Differencing,” in Proceedings
of the 29th International Conference on Automated Software Engineer-
ing (ASE). ACM, 2014, p. 313–324, DOI: 10.1145/2642937.2642982.

[14] S. Gholamian and P. A. S. Ward, “Logging Statements’ Prediction Based
on Source Code Clones,” in Proceedings of the 35th Annual ACM
Symposium on Applied Computing, ser. SAC. ACM, 2020, p. 82–91,
DOI: 10.1145/3341105.3373845.

[15] M. Goldstein, D. Raz, and I. Segall, “Experience Report: Log-Based
Behavioral Differencing,” in Proceedings of the 28th International
Symposium on Software Reliability Engineering (ISSRE), 2017, pp. 282–
293, DOI: 10.1109/ISSRE.2017.14.

[16] A. Hamid and V. Zaytsev, “Detecting Refactorable Clones by Slicing
Program Dependence Graphs,” in Post-proceedings of the Seventh Sem-
inar in Series on Advanced Techniques and Tools for Software Evolution
(SATToSE 2014), ser. CEUR Workshop Proceedings, vol. 1354. CEUR-
WS.org, 2015, pp. 37–48.

[17] S. Hayashi, S. Thangthumachit, and M. Saeki, “REdiffs: Refactoring-
aware difference viewer for Java,” in Proceedings of the 20th Working
Conference on Reverse Engineering (WCRE), 2013, pp. 487–488, DOI:
10.1109/WCRE.2013.6671331.

[18] E. G. John Ellson et al., “Graphviz homepage,” Online: https://graphviz.
org/about/, 2021.

[19] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “Ref-Finder: A
Refactoring Reconstruction Tool Based on Logic Query Templates,” in
Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE). ACM, 2010, DOI:
10.1145/1882291.1882353.

[20] M. Kim and D. Notkin, “Discovering and Representing Systematic
Code Changes,” in Proceedings of the 31st International Conference
on Software Engineering (ICSE). IEEE, 2009, p. 309–319, DOI:
10.1109/ICSE.2009.5070531.

[21] J. W. Laski and W. Szermer, “Identification of Program Modifications
and Its Applications in Software Maintenance,” in Proceedings of the
Eighth Conference on Software Maintenance (ICSM). IEEE Computer
Society, 1992, pp. 282–290, DOI: 10.1109/ICSM.1992.242533.

[22] Z. Li, “Characterizing and Detecting Duplicate Logging Code Smells,”
in Companion Proceedings of the 41st International Conference on
Software Engineering (ICSE), Student Research Competition, 2019, pp.
147–149, DOI: 10.1109/ICSE-Companion.2019.00062.

[23] Z. Li, T. Chen, J. Yang, and W. Shang, “DLFinder: Characterizing and
Detecting Duplicate Logging Code Smells,” in Proceedings of the 41st
International Conference on Software Engineering (ICSE), 2019, pp.
152–163, DOI: 10.1109/ICSE.2019.00032.

[24] J. I. Maletic and M. L. Collard, “Supporting Source Code Difference
Analysis,” in Proceedings of the 20th International Conference on
Software Maintenance (ICSM). IEEE, 2004, pp. 210–219, DOI:
10.1109/ICSM.2004.1357805.

[25] S. Maoz, J. O. Ringert, and B. Rumpe, “ADDiff: Semantic Differencing
for Activity Diagrams,” in Proceedings of the 19th Symposium on the
Foundations of Software Engineering and the 13rd European Software
Engineering Conference (FSE), T. Gyimóthy and A. Zeller, Eds. ACM,
2011, pp. 179–189, DOI: 10.1145/2025113.2025140.

[26] H. Nguyen, M. Dumas, M. La Rosa, and A. H. M. ter Hofstede, “Multi-
perspective Comparison of Business Process Variants Based on Event
Logs,” in Conceptual Modeling, J. C. Trujillo, K. C. Davis, X. Du, Z. Li,
T. W. Ling, G. Li, and M. L. Lee, Eds. Cham: Springer, 2018, pp.
449–459, DOI: 10.1007/978-3-030-00847-5 32.

[27] Pharo consortium, “Pharo homepage,” Online: https://pharo.org, 2021.
[28] Raincode Labs, “PACBASE Migration: Flexible Process,” https://www.

raincodelabs.com/pacbase/, 2021.
[29] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering

questions during a programming change task,” IEEE Transactions
on Software Engineering, vol. 34, no. 4, pp. 434–451, 2008, DOI:
10.1109/TSE.2008.26.

[30] B. A. Tama and M. Comuzzi, “An Empirical Comparison of Classifica-
tion Techniques for Next Event Prediction using Business Process Event
Logs,” Expert Systems with Applications, vol. 129, pp. 233–245, 2019,
DOI: 10.1016/j.eswa.2019.04.016.

[31] G. de la Torre, R. Robbes, and A. Bergel, “Imprecisions diagnostic in
source code deltas,” in Proceedings of the 15th International Conference
on Mining Software Repositories, ser. MSR. Association for Computing
Machinery, 2018, p. 492–502, DOI: 10.1145/3196398.3196404.

[32] S. Urli, A. Bergel, M. Blay-Fornarino, P. Collet, and S. Mosser, “A
visual support for decomposing complex feature models,” in 2015 IEEE
3rd Working Conference on Software Visualization (VISSOFT), 2015,
pp. 76–85, DOI: 10.1109/VISSOFT.2015.7332417.

[33] Z. Wang, K. Pierce, and S. Mcfarling, “BMAT – A Binary
Matching Tool for Stale Profile Propagation,” Journal of Instruction-
Level Parallelism, vol. 2, pp. 1–20, 06 2000. [Online]. Available:
http://www.jilp.org/vol2/v2paper2.pdf

[34] Z. Xing, “Model Comparison with GenericDiff,” in Proceedings of
the 25th International Conference on Automated Software Engineering
(ASE). ACM, 2010, pp. 135–138, DOI: 10.1145/1858996.1859020.

[35] Z. Xing and E. Stroulia, “UMLDiff: An Algorithm for Object-Oriented
Design Differencing,” in Proceedings of the 20th International Con-
ference on Automated Software Engineering (ASE). ACM, 2005, pp.
54–65, DOI: 10.1145/1101908.1101919.

[36] ——, “API-Evolution Support with Diff-CatchUp,” IEEE Transactions
on Software Engineering, vol. 33, no. 12, pp. 818–836, 2007, DOI:
10.1109/TSE.2007.70747.

[37] W. Yang, “Identifying Syntactic Differences between Two Programs,”
Software Practice & Experience, vol. 21, no. 7, p. 739–755, Jun. 1991,
DOI: 10.1002/spe.4380210706.

[38] V. Zaytsev and J. Fabry, “Fourth Generation Languages are Technical
Debt,” International Conference on Technical Debt, Tools Track
(TD-TD), 2019. [Online]. Available: http://grammarware.net/text/2019/
4gl-techdebt.pdf

https://doi.org/10.1007/978-3-642-31095-9_41
https://doi.org/10.1007/978-3-642-31095-9_41
https://doi.org/10.5555/1025115.1025202
http://AgileVisualization.com
http://books.pharo.org/deep-into-pharo/
http://agilevisualization.com/
http://agilevisualization.com/
https://github.com/ModelInference/perfume-frontend
https://github.com/ModelInference/perfume-frontend
https://github.com/ModelInference/synoptic
https://github.com/ModelInference/synoptic
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1016/j.is.2017.12.006
https://doi.org/10.1002/smr.2226
https://doi.org/10.1007/978-3-030-64148-1_17
https://doi.org/10.1007/978-3-030-64148-1_17
https://github.com/CelineDknp/PACBASEValidationData
https://github.com/CelineDknp/PACBASEValidationData
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/3341105.3373845
https://doi.org/10.1109/ISSRE.2017.14
https://doi.org/10.1109/WCRE.2013.6671331
https://graphviz.org/about/
https://graphviz.org/about/
https://doi.org/10.1145/1882291.1882353
https://doi.org/10.1109/ICSE.2009.5070531
https://doi.org/10.1109/ICSM.1992.242533
https://doi.org/10.1109/ICSE-Companion.2019.00062
https://doi.org/10.1109/ICSE.2019.00032
https://doi.org/10.1109/ICSM.2004.1357805
https://doi.org/10.1145/2025113.2025140
https://doi.org/10.1007/978-3-030-00847-5_32
https://pharo.org
https://www.raincodelabs.com/pacbase/
https://www.raincodelabs.com/pacbase/
https://doi.org/10.1109/TSE.2008.26
https://doi.org/10.1016/j.eswa.2019.04.016
https://doi.org/10.1145/3196398.3196404
https://doi.org/10.1109/VISSOFT.2015.7332417
http://www.jilp.org/vol2/v2paper2.pdf
https://doi.org/10.1145/1858996.1859020
https://doi.org/10.1145/1101908.1101919
https://doi.org/10.1109/TSE.2007.70747
https://doi.org/10.1002/spe.4380210706
http://grammarware.net/text/2019/4gl-techdebt.pdf
http://grammarware.net/text/2019/4gl-techdebt.pdf

