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Abstract—We propose a tool and underlying technique that
uses semi-parsing to extract control flow graphs from legacy
source code (i.e., COBOL). Obtaining such control flow graphs
is relevant in the industrial setting of legacy modernisation, to
quickly demonstrate to code owners that modernisation engineers
did not break their business logic. They need to be convinced
that a migration did not affect the flow around critical parts of
their code such as database accesses. Focusing on the control
flow around embedded SQL queries and confirming that the
code logic has been preserved improves customers’ trust and
satisfaction in the modernisation. Our proposed algorithm and
approach uses fuzzy parsing as opposed to full parsing to parse
mainly the control flow constructs, while delegating the full
parsing of embedded languages like SQL to an external parser,
and produces a control flow graph directly while skipping over
most of the input in linear time. Such a fuzzy parser is easier
to construct and adapt to particular languages and needs than a
full parser with a visitor to elicit control flow. Comparisons are
made of the fuzzy parser to an industrial-strength full parser.

Index Terms—Semi-parsing, fuzzy parsing, legacy modernisa-
tion, control flow graph, COBOL, SQL, industrial use case

I. INTRODUCTION

Control Flow Graphs (CFGs) have many uses for test-
ing, analysing, understanding or comparing programs [2].
However, obtaining them is computationally heavy, requiring
significant development effort when the target language or
its specifications are unusual, as is often the case for legacy
languages. Specialised CFG generation tools are available only
for some languages, and tend to impose such strict structural
conditions on their output that they are not suitable for every
scenario. Another option is to generate CFGs with a bespoke
tool from parse trees produced by full parsers. In this case,
the produced CFGs can match exactly one’s analysis needs.
Unfortunately, full parsers are not always easily obtainable,
and sometimes non-existent. The effort necessary to create
a full parser from scratch is rather large (a famous expert
quote puts it at 2–3 years [28]). As an alternative, semi-
parsing techniques have been proposed [37] and could suffice
for creating CFGs, as we will explain in the following sections.
Semi-parsers are simpler to write as they only need to parse
those language fragments relevant for the CFG, and make it
easier to adapt the generated CFG to a project’s needs.

In an industrial context of legacy code modernisation, CFGs
could be used to prove to code owners that the behaviour

of their programs before and after migration is unchanged,
especially around critical parts of the code like database reads
and writes. For this, we use a semi-parsing technique based
on fuzzy parsing [25], [37]. We evaluate the feasibility of
this approach by creating a semi-parser for COBOL that is
easily configurable while leveraging an existing full parser
for embedded SQL code. This allows our parser to create
CFGs containing only control flow structures of relevance,
and to obtain a full parse subtree of the SQL embedded in
the COBOL code, in order to be able to compare that the
behaviour of both are preserved by a migration.

This paper is structured as follows: Section II presents the
idea of semi-parsing in general and introduces our chosen
technique of fuzzy parsing; Section III presents our industrial
use case, and discusses how CFGs could be leveraged to
handle it; Section IV introduces CFGs, detailing how they
are usually generated as well as presenting some related work
about them; Section V presents the implementation details
of our fuzzy parser for COBOL with embedded SQL, going
over the parser configuration, its preprocessing step, the semi-
parsing algorithm itself and a few concrete examples of the
CFGs it generates; Section VI validates the correctness and
performance of our fuzzy parser by comparing it with a full
industrial parser for COBOL1; Section VII discusses several
metrics to take into account when deciding which approach
would be better suited for different uses cases; Section VIII
concludes the paper and presents directions for future work.

II. PARSING VS. SEMI-PARSING

Parsing as the analysis of syntax of computer programs
has been an integral part of automated compilers since their
beginning. In a broader sense, it can be understood as the
process of eliciting the structure that was expected to be found
in a software artefact, and making this structure explicit as
preparation for further processing [41]. The syntactic com-
mitments of an artefact can be as strict or as loose as the
situation dictates, and the expectations are usually expressed
in some explicit form: a grammar, a regular expression, a
type, a schema, etc, sometimes collectively being referred

1This paper is accompanied by an artefact that can be found here: https:
//zenodo.org/deposit/6806075
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to as “grammars in a broad sense” [22]. Grammars can
have vocabularies ranging from several distinct symbols to
over 5000 of them [38]. When the syntactic expectations are
expressed in a form close to that of a context-free grammar,
many parsing algorithms are readily available [15]. Most of
them expect the program either to comply to these expectations
fully, or be declared invalid.

Parsers are metaprograms that typically take a program in
textual form as input and produce a more structured represen-
tation of the program in the form of a tree, a graph, a table,
and so on. We distinguish two groups of such metaprograms:
full parsers and semi-parsers.

Full parsers [15] have a complete overview of the syntactic
expectations of a language, and expect the input to fully
conform to all of them. In exchange, they produce a fully
structured (“parsed”) version of the input. It is not uncommon
for abstract syntax trees to contain information about variable
types, name scopes and other complicated matters useful for
figuring out the semantics of the parsed program afterwards.

Semi-parsers [6], [37] admit to having only a partial
overview and embrace it by handling uncertain portions of the
input tolerantly or not at all, and yield only an estimation of
the full structured representation. Depending on particularities,
their output can be a normal full tree/graph constructed under
a set of assumptions (e.g., “a semi-colon is expected, but let
us assume it” or “a variable is undefined, but it seems like
its type could be string”), or a partial tree with explicit gaps
(e.g., one does not need to fully understand HTML to be
able to extract all CSS snippets from it). Fact extractors can
be seen as extreme forms of semi-parsers that only collect
imported module names to construct a dependence graph, or
only handle comments and line continuations to count the
logical lines of code. In the industrial practice of language
processing one often comes across situations where a full
definition of a legacy language is unobtainable or unreliable, or
when the investment in the development of a full parser cannot
be justified. Semi-parsing offers an interesting alternative.

As wonderful and omnipresent as full parsers can be, they
have at least three disadvantages in the context of software
modernisation. Firstly, they are very complex to write, and
literally take years to complete [28]. Many legacy codebases
contain a language cocktail, and it would have been a major
investment to develop a full high quality parser each time
a new fourth generation language (4GL) enters the scene,
and even handling hard-to-parse exotic 3GLs like REXX
or RPG can in many contexts be inexpedient. It has been
estimated by one of the experts on the Y2K problem that
in 1998 there were at least 200 proprietary 4GLs in active
use [20], and many of them are still active today. Secondly,
in a world where just handling COBOL (the most used legacy
language, and one of the 700 that can be found on mainframes)
means being ready to encounter up to 300 different COBOL
dialects [27] and to deal with various versions of compet-
ing compilers that accept diverging syntax, strict adherence
to the syntactic expectations is not only undesirable, it is
highly unrealistic. There are always “uninteresting” syntactic

deviations in spelling keywords or using the preprocessor to
handle non-existing statements as extensions. On top of that,
modernisation engineers often need to deal with obfuscated
code (sometimes up to the point of it not being executable) or
partial code (e.g., COPY books in COBOL serve the same
function as libraries in other languages, but with lexical
parameterisation — such a COPY book is never a fully parsable
compilation unit). Thirdly, language embedding is still an open
problem, especially in technology-defined grammar classes
(e.g., a composition of two context-free grammars is still
context-free, but a composition of two LALR grammars or two
ALL(∗) grammars can be anything). Legacy languages like
COBOL, PL/I, FORTRAN or 4GLs, often contain fragments
of embedded SQL queries, JCL requests or CICS commands.
Each such language boundary must be manually programmed
and thoroughly tested, and even then without a full parser
of the embedded language, the EXEC block containing the
embedded queries will stay unparsed. Interestingly, this is a
well-known phenomenon in semi-parsing, which refers to such
unparsable regions as “lakes” [37].

Semi-parsers have a number of disadvantages as well, such
as overapproximating the input language — we will address
them concretely in the following sections. The industrial
state-of-the-art attitude is to accept semi-parsers in program
analysis, but not in program transformation [3]. However, they
have three advantages that are worth mentioning up front: (1)
since their development effort is much lower, it is possible
to create them in an agile way, catering fully to customers’
needs and using them in early stages of the project during
joint workshops and feasibility studies; (2) due to their built-
in tolerance, semi-parsers are often naturally applicable to a
range of language dialects, and have the capacity to skip over
embedded fragments just as easily as they skip over other
“uninteresting” input parts; (3) it is often possible to overstep
the formal limitations of language composition and grammar
modularity, and develop a bespoke “grammar” (in a broad
sense) for each scenario. Semi-parsers are uniformly accepted
also in interaction situations where responsiveness is more
important than precision — such as syntax highlighting or
contextual code completion in an IDE.

The core of the particular algorithm we use in this paper,
is based on the idea of fuzzy parsing [25] with anchor tokens.
In short, the semi-parser scans the input in search of one
of the anchors it knows (e.g., EXEC, IF, etc) and skips all
other tokens. Once the anchor matches, the actual parsing
begins. Formally speaking, this is a form of event-based
parsing [40] where parse actions are executed reactively after
witnessing something specific in the input, and not dictated by
the grammar. For our approach, which will be described in full
in Section V, the “actual parsing” can mean one of two things,
depending on the anchor: it could lead to an invocation of an
external full parser (for embedding SQL and incorporating full
parse trees of each query into the result); or to a modification
to a control flow graph that we are constructing instead of
the parse tree. Thus, it is a bespoke setup combining semi-
parsing [37] ideas of fuzzy parsing [25] with parsing in a



broad sense [41].

III. INDUSTRIAL USE CASE

Raincode Labs (https://www.raincodelabs.com) is an in-
dependent compiler company that, as part of its portfolio,
provides services for legacy system modernisation. One such
service is PACBASE migration [32]. PACBASE is a fourth
generation language [42] for which vendor support has been
phased out [17]. Following the declared termination of sup-
port, owners of PACBASE codebases naturally declared it
unwanted, and seek ways to retire their PACBASE code as
well. In theory, companies could maintain the COBOL code
generated by PACBASE, but this code is not friendly for
the eyes nor for maintenance activities by human developers
(unformatted, dead code fragments, partly obfuscated names,
overly deeply nested control constructs, etc). Rewriting it from
scratch is also not feasible in practice, due to the amount of
effort it would require [34]. Raincode’s PACBASE migration
service provides a viable alternative: it automatically refac-
tors PACBASE-generated COBOL code to human-readable
COBOL, in a manner that is configurable by the customer [8],
[9]. This solution exists for twenty years and has successfully
refactored over 350 million lines of COBOL code.

For some customers the very fact that such a large amount
of code has already been processed by the PACBASE mi-
gration kit and successfully deployed afterwards, serves as a
sufficiently convincing argument for applying it to their own
code. Other customers desire a more solid assurance that the
solution works on their specific codebase, which they usually
consider as “different” in some way from all the other, already
processed, ones. Hence, part of the process before setting
up a migration is showing and convincing the customer that
the solution works on their codebase. While applying the
refactoring itself is not a problem, there are currently no tools
that, given (a part of) the customer’s code, illustrate that the
migrated COBOL code has the same behaviour as the original
code, i.e. that the migration is indeed truly a refactoring.

One way to assure a customer that the code changes are
behaviour-preserving, is to illustrate that database accesses
remain unchanged, since they are at the heart of their business
logic. For database access, COBOL allows the inclusion
of embedded SQL through the EXEC SQL ... END-EXEC
statement. This statement is treated by the mainframe COBOL
preprocessor, so it is technically not part of the COBOL
standard, but of the Db2 standard, along with ways to embed
SQL queries in FORTRAN, REXX, C and C++ [19]. By
showing that the control flow that leads to each database ac-
cess, is unchanged after the refactoring, the customer becomes
more confident that the core business logic of his application
remains unchanged. Some analysis tool that processes the two
versions of a COBOL program (before and after refactoring)
and shows both CFGs, with a focus on execution of SQL
queries, would hence be an important asset in conversations
with the customer.

In such an analysis tool, performance is crucial. Its intended
use is within an interactive session with the customer as part

of a proof-of-concept (POC) evaluation. Such a POC consists
of firstly migrating a representative subset of the customer’s
codebase, and secondly evaluating, together with the customer,
whether the refactored result matches the customer’s require-
ments. The migration for a POC is a multi-hour process,
possibly on the hardware of the customer. This makes it hard
to argue for adding an extra post-processing phase that would
perform the control flow analysis over the entire codebase.
Instead, in an interactive session a customer would pick a few
representative programs and the tool should produce the graphs
on the fly. Thus, tool performance is crucial.

In fact, if such a proposed tool for comparing CFGs existed,
we could also envision it being used during the verification
phase after the full migration. It can flag any programs
with significant differences in the control flow, for the list
to be reviewed by the migration engineers, and possibly
discussed back with the customer. In such an application sce-
nario performance still remains crucial, since a full migration
typically concerns millions of lines of COBOL code. It is
not uncommon for servers to be provisioned such that the
migration of the codebase becomes an overnight process. An
extra verification phase should not add an overhead that would
require a significant increase in processing time or in server
provisioning, otherwise it simply would not be used.

IV. CONTROL FLOW GRAPHS

Control Flow Graphs (CFGs) are a representation of all
the paths that could be followed during the execution of a
program [2]. Each node of a CFG represents a code statement,
and edges connecting nodes represent steps in the program’s
control flow. Such graphs can be useful when one needs to
understand a program at a glance, or when the language that
was used to create the program is not well known to the user.
In the context of our industrial use case, the focus is less on
understanding the entirety of a legacy program, but more on
allowing the user to zoom in on and compare the control flow
around database read and writes, a critical part of the business
logic. This can be achieved more easily using a graph than
through highlighted code since when generating that graph, we
can pick and choose what to show or not, i.e. keeping only the
most important parts of the control flow to shorten the output.
This can be seen as a kind of intentional slicing [36].

The most generic way of creating a CFG is by using a full
parser: given the parse tree of a piece of code, generating its
corresponding control flow graph is a relatively straightforward
traversal of the tree, creating nodes and connecting them as
needed. Another way to generate CFGs is to use one of the
many existing tools. The issue with that approach is that
those tools are only available for some languages, mostly
widely used ones. Popular CFG-handling tools include Gram-
maTech’s CodeSonar (previously known as CodeSurfer) [14]
and Ghidra (and the entire GTIRB-based ecosystem) [30],
UCLA’s Aurora [35] and UniLeiden’s JShowFlow [5], Eclipse
plugins EclipseCFG [1] and Atlas SDK [12], Python modules
StatiCFG [4] and PyCFG [13], etc. Using a ready-made tool
presents the advantage of being a very fast way to obtain a
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CFG, but may limit the ability to tune the tool’s output to one’s
particular needs. Also, when dealing with less widely known
languages, and legacy languages with multiple dialects, it is
possible that no quality tools exist that are freely available.
This is the case for COBOL. For some more confidential
languages, it even happens that no parser is available at all.

Yet another way to generate CFGs is to use a one-stop-
shop language workbench with a meta-programming language
like Spoofax [21] or Rascal [23]. They come equipped with
their own way of analysing the control flow of code, for
these examples called FlowSpec [33] and DCFlow [18]. While
these are generally of higher quality and abstraction level,
all language workbenches require a good deal of background
knowledge and often a steep learning curve from their users,
which in the context of this project was not sufficiently
available within Raincode Labs.

While each of the above techniques are interesting, we
wanted to explore an approach that did not require the user
to know any meta-programming or DSL, and chose to go
with a semi-parsing technique since it is both lightweight
and accessible, while providing the advantage of allowing to
generate CFGs of desired structure.

V. OUR APPROACH

In this section we describe in detail the approach we used
to create our fuzzy parser. To allow it to be very flexible, we
divided it into two parts: the parsing logic and a configuration
file, with the idea being that in most cases users of the parser
should only edit the configuration file to be able to adapt the
parser to their needs. First we present the parser configuration,
followed by a preprocessing phase, then the intuition of how
the parsing algorithm works, and finally we explore some
results we obtained by applying it on a few small handcrafted
examples.

A. Parser configuration

The configuration is a Python file that contains a set of
arrays, each defining a type of language structure we are
looking for in the code. Each element of those arrays is a
specific definition of that structure, e.g. an IF statement is a
specific definition of a condition as illustrated by Listing 1:

Listing 1: Extract of our parser configuration file for COBOL.
1 conditions = [
2 {"start": r"\sIF(\s)+",
3 "condition_delimiter": r"\sTHEN(\s)+",
4 "mandatory_delimiter": False,
5 "single_branch": r"ELSE\s", "end": r"\sEND-IF"},
6 ...
7 ]

Using this file, users can both pick exactly what structures
they are interested to see in the output control flow graphs,
and define to the parser what is the syntax of those structures.
The content of this configuration file would therefore change
mostly in function of the language that is being parsed, but
one could also omit a certain type of structure if they do not
want to have them in the output. Whereas such omissions can

result in CFGs that do not fully reflect the language semantics
yet, it does help in building the fuzzy parser incrementally, by
adding one language construct at the time, until reaching the
full language semantics that one wants to cover.

For our industrial use case in COBOL, we included the
following structures:
Condition The COBOL statements IF/ELSE and

EVALUATE ... WHEN.
Loop The COBOL statements GO TO, PERFORM, PERFORM

THRU, PERFORM VARYING and NEXT SENTENCE.
Note that in COBOL, most of these are not conventional
loops, but behave more like jumps through the code that
either return to where they started (PERFORMs) or do not
return at all (GO TO and NEXT SENTENCE). The only
exception is PERFORM VARYING, which is equivalent
to a standard Java for-loop. It is present only in the
post-migration files, but its inclusion was requested by
Raincode engineers.

Parsable This structure is used to define program fragments
to be analysed by an external parser, in our case EXEC
SQL since we want to delegate the parsing of embedded
SQL fragments to a separate parser.

Ignorable structures that we do not want to see in the
generated CFGs, but that are sometimes needed to disam-
biguate the rest. Usually these are strings and comments.

Special This structure groups special language-specific cases
that need to be dealt with. In the case of COBOL, for
example, we need to handle the special DOT statement
(.) which closes all open statements. For our industrial
case we parse only the procedure division of COBOL
programs, with a special anchor to skip to that division.

Every element of the arrays found in the configuration file
can be edited or removed, and new ones can be added. In case
of adding a new element, some edits to the actual parsing code
may be necessary to implement the new structure’s logic.

A concrete example of such a configuration file for COBOL
can be found on GitHub [10]. To define the syntax of the
statements we are looking for, we decided to use Python’s
regular expression module re [31]. This choice was motivated
both by its ease of use and by COBOL’s inner complexity.
Indeed, some statements can have multiple correct syntaxes,
like the well-known GO TO which can also be written as just
GO while having exactly the same semantics.

B. Preprocessing

Before being able to parse our COBOL files, we need
to preprocess them. (Not in the sense of using the COBOL
preprocessor, but rather altering the input of our parser). Since
some of the files used in our use case are generated by
PACBASE, they contain line numbers and program identifiers,
which are a part of the line-by-line structure, but not a part of
the core syntax. An example of what a PACBASE-generated
file looks like prior to such cleaning can be seen in Figure 1.
Technically columns 1–7 and 73–80 can be ignored by the
fuzzy parser itself reacting to pseudotokens (similar to how
most Python parsers work with indent/dedent pseudotokens),

https://github.com/CelineDknp/SemiParsingCFG/blob/main/src/Utils/config.py


012900 F9520-C. MOVE DAT73C TO DATCTY. ALCB018
012910 MOVE DAT71C TO DAT71. ALCB018
012930 MOVE DAT74C TO DAT73. ALCB018
012940 MOVE ’00111’ TO TT-DAT GO TO F9520-T. ALCB018

Fig. 1: A PACBASE-generated program fragment: only columns 12–72, also known as “Area B”, should be parsed as COBOL,
with columns 8–11 (“Area A”) defining the structure (divisions, sections and paragraphs).

but that would bias our parser too strongly towards position-
based languages which often require drastically different
parsing techniques anyway [39]. Thus, we opt for a gentle
preprocessor that replaces everything outside Areas A and B
with spaces and keeps the COBOL code syntactically correct
and semantically equivalent. This also allows us to deal with
line continuations and comment markers at column 7.

C. Parsing

Since we are relying on semi-parsing (see Section II), the
core of our algorithm is relatively simple. First, when our
parser is instantiated, it goes trough the configuration file to
define the anchors. To simplify the parser’s code, the different
regexes are compiled and passed to another object that will
keep track of which ones are active (i.e. still present in the
rest of the input). The parser only handles the actual matches
of the regex, keeping both a list of the next match for each
anchor, and one with iterators that allow us to retrieve the next
matches when needed.

The parser moves through the input as a long string with
an index, starting at zero and jumping from anchor to an-
chor. At each step, our parser finds the anchor that has the
earliest match in the input, and passes it to a handler that
processes them differently according to their type (Condition,
Loop, Parsable, Ignorable or Special, see subsection V-A) and
according to their exact match. This process creates Node
objects that will form the final CFG, and analyses any needed
additional information like an IF’s condition.

It is important to note that our Ignorable (comments and
strings) matches are used only when they are needed to
disambiguate. When looking for the next anchor, if we find a
match for an IF, but find that an Ignorable anchor overlaps
it, we pick the string or comment instead of the if, and don’t
add any node to the graph.

The only other special case worth mentioning regarding the
computation of additional details about a node is the case
of Parsable nodes. To parse the embedded SQL statements it
encounters, our parser simply calls the SQL parser generated
from an open source ANTLR grammar [24]. Our Parsable
node objects have access to the SQL grammar and a function
allowing them to parse a string using the antlr4 Python
module. After retrieving the SQL code, conveniently contained
between the EXEC SQL and END-EXEC statements, they pass
it to ANTLR to create a parse tree that is stored inside the
Node object for later use.

The parser’s iterative processing of the input, anchor by
anchor, continues until either the end of file is reached or no
more match is found for any of the anchors.

To finish fully constructing the final CFG, we make a pass
through our loop nodes to make sure that they point towards
the right children. Indeed, given the jumpy nature of COBOL
code, it is common to have GO or PERFORM statements
pointing towards a label that is further down the code, and
that we did not have knowledge about yet at the moment of
parsing the loop itself. For simplicity, we resolve all of these
after the first parsing phase, when we are guaranteed to have
found all correct labels to point to.

At the end, we obtain an object representation of a CFG
corresponding to the given file. It is serialised into a file to
be visualised later. For this, we use the GraphViz [11] library,
which has the advantage of being directly connected to Python
and easy to use to produce a visualisation of such graphs. In
later stages of our work, rather than just visualising it, we will
use the CFG object representation to compare it with other
CFGs (for example, the CFG of a COBOL program before
and after a migration step).

D. Example

We now illustrate concretely how the parser works on the
small handcrafted COBOL example of Listing 2.

Listing 2: A small handcrafted COBOL code example
1 IDENTIFICATION DIVISION.
2 PROGRAM−ID. Example1.
3 ENVIRONMENT DIVISION.
4 DATA DIVISION.
5 PROCEDURE DIVISION.
6 IF A > 0
7 NEXT SENTENCE
8 ELSE
9 DISPLAY "First if branch"

10 END−IF.
11 IF B = 0
12 DISPLAY "Second if"
13 END−IF.

After loading all anchors and searching for all their first
occurrences, the fuzzy parser will be left with only the
following: the special PROCEDURE DIVISION anchor on
line 5 to start the parsing, the condition anchors IF, ELSE
and END-IF, the loop NEXT SENTENCE anchor and finally
the ignorable string anchor.

Let us analyse the parser operations line by line:
• Even though we start at line 1, there is nothing of interest

to parse until line 5, where we find the first PROCEDURE
DIVISION anchor. This does not produce any node, but
advances the parser’s index up to the start of line 6.

• On line 6, we find a match for one of the condition
anchors. A node denoting the start of an IF is created,
and the parser also takes note of its condition A > 0. To



allow us to keep track of how the nodes are embedded,
we also increment a depth variable. All nodes created
after this point will be inside the IF, at a depth of 1.

• On line 7, a match is found for a loop anchor. A node
is created, and a new anchor is added to the list: the
parser now looks for a DOT (.), which will indicate the
end point of the loop. (In COBOL, NEXT SENTENCE
redirects control to after the next dot in the input).

• On line 8, there is again a match for one of the condition
anchors, this time for a branch. No new node is created
in the graph, we simply mark the “True” branch of the
first condition node as closed (new nodes that we parse
next will no longer be added as its children).

• Line 9 does contain a string, but it does not overlap with
another anchor, so it is ignored by the parser.

• On line 10, there are two separate entities to parse: first,
the END-IF which is a match for one of the condition
anchors and will result in the closing of the first condition
node. The internal depth variable is decreased by one and
this closure is matched with the nearest open condition
of the same depth. The second match concerns the DOT,
which is processed to act as the end point of the loop
node, adding a temporary node in the graph to mark its
position.

• Finally, another IF node with the condition B = 0 is
created for line 11, line 12 is ignored and line 13 closes
the second condition node.

As described above, after this first parsing phase is done,
we make sure all loop nodes present in the graph point to
the correct place. In our example, we suppress the previously
created DOT node, pointing the NEXT SENTENCE to where
that DOT node was, and the graph is complete.

The CFG produced by parsing the program of Listing 2
is shown on the left side of Figure 2. We represent the start
and end point with a diamond shape, and show the COBOL
statements in ellipses, with some edge annotations.

Note that due to the semantics of COBOL, very slight
changes to a COBOL program can change its CFG greatly.
For example, if we transfer the DOT seen on line 10 to the
end of line 13 (i.e. after the second END-IF and not the
first), we change where the NEXT SENTENCE jumps to, and
therefore the CFG itself. The CFG output corresponding to
this variation of code Listing 2 is shown on the right side of
Figure 2. The parsing itself is almost the same, except for the
step at which the DOT is parsed, which is now the last one.

Listing 3: A small COBOL program with embedded SQL code
1 IDENTIFICATION DIVISION.
2 PROGRAM−ID. Example2.
3 ENVIRONMENT DIVISION.
4 DATA DIVISION.
5 PROCEDURE DIVISION.
6 IF A > 0
7 EXEC SQL SELECT * FROM TABLE END−EXEC
8 END−IF.

The last feature in our fuzzy parser is its ability to make
use of an external parser to analyse an embedded language,

Fig. 2: Generated CFGs for code example from Listing 2 and
its variation with the DOT only on line 13

in our case the SQL code present in between an EXEC SQL
and END-EXEC statement in a COBOL program. Consider
the code of Listing 3.

The parsing happens in a very similar way as described
earlier with the addition of a Parsable anchor in the anchors
found present in the program (on line 7, instead of the loop
anchor found previously on that line in listing 2). As before,
the parsing starts with the PROCEDURE DIVISION and the
IF. When arriving at line 7, the handler for the Parsable
anchor creates a node and extracts the SQL code between
the delimiting COBOL statements. This SQL is stored in the
node as plain text for ease of representation with Graphviz,
but it is also passed to an ANTLR parser, which creates a
parse tree of the code that we will be able to use when we
need to compare the SQL code pre- and post migration of a
COBOL program. The parsing is finished with the processing
of the END-IF at line 8, and for this program we do not have
any loops to clean-up after the first phase. Figure 3 shows the
resulting CFG for the code of Listing 3, with the embedded
SQL shown in boxes to visually differentiate it from COBOL.

Fig. 3: Generated CFG for the code example from Listing 3



VI. EVALUATION

In this section, we present how we evaluated our approach
both from a qualitative and a quantitative point of view.
We first go over the methods we used to ascertain that
the produced CFGs are correct, and then compare how the
performance of our fuzzy parsing approach fares against using
a full parser instead.

A. Qualitative Results

The first step we took to ensure that our control flow graphs
were correct was to manually write small pieces of COBOL
code to act as test files. We wrote some containing basic
forms of the structures we wanted to analyse, along with some
interesting edge cases, or cases that generated bugs during
development. Using those as a base, we wrote a test suite to
examine and verify the details of what was found during the
parsing phase: which anchor was triggered when, what nodes
did it create, and whether or not the content of those nodes
was what we expected. We also took care to test the produced
CFGs, i.e. contained nodes and links between them. Listing 2
was part of this test suite, as well as its variation in Listing 3.
One of our tests makes sure that both variants indeed produce
the two different outputs shown in Figure 2. In total, we wrote
95 tests over 32 different handcrafted files, considering nested
conditions and loops, some EXEC SQL to test our integration
with ANTLR, the inherent case insensitiveness of COBOL
as well as difficult cases where string or comments contain
fragments that could be mistaken for parsable code.

While this test suite was very useful during the incremental
development phases of our fuzzy parser, it was still limited
in a number of ways. Since our collaboration with Raincode
Labs gave us access to their industrial-strength full parser
for COBOL, we took advantage of that. We wrote a script
to transform the parse trees created by their full parser to
CFGs and compared these CFGs to our own. The comparison
itself was done manually by probing diverse programs. (An
automated CFG differ script is currently under construction).
We found that the CFGs were semantically equivalent in all
cases, even if the syntax used was not always exactly the
same. COBOL contains a lot of synonyms, which the Raincode
parser normalises (e.g., characters like < and = in the input
appear as GREATER and EQUAL in the tree). The resulting
CFGs produced from the Raincode parser outputs for the code
in Listing 2 and its variation can be seen on Figure 4. Apart
from the small syntactic differences mentioned above, they are
equivalent to the CFGs in Figure 2.

B. Quantitative Results

To compare their performance, we applied both our fuzzy
parser and the full parser of Raincode to four sets of files:
our test files, NIST COBOL test suite [29] (a well-known
open-source test suite for COBOL85), and all COBOL files
both pre- and post-migration of one of Raincode Labs’ recent
PACBASE migration projects. In total that gave us 32 small
handcrafted files, one open-source project of 410 files, and two
sets of 3014 files each. Whereas the first two sets are available

Fig. 4: Outputted CFGs for code example 2 and its variation
using Raincode’s parser

to reproduce our experiment, the files of the PACBASE
migration use case are confidential.

The set-up of our experiment is as follows: for each COBOL
file we run the first phase of our fuzzy parser (creating the
nodes, but not linking them) and Raincode’s full parser. This
is the fairest comparison we could come up with: at that point
our fuzzy parser has not fully generated the CFG yet, but
from Raincode side, we are left with a full parse tree that
still needs to be transformed to a CFG as well. We chose not
to measure the time it would take to obtain a CFG for both
methods because in the case of Raincode parser, getting the
CFG requires the parse tree to be written to disk in XML
form and then be read from disk again. The alternative would
be to modify their parser so that it creates CFGs immediately,
but this would have required substantial help from someone at
Raincode Labs. Also note that our fuzzy parser uses ANTLR
to parse the embedded SQL code found inside the COBOL
files, while the full parser leaves EXEC blocks untouched. We
performed our comparisons both with and without parsing the
embedded SQL, and found that running the ANTLR parser
does not pose too much of an overhead, taking roughly 20 sec-
onds for all 3014 files of our industrial uses cases (only those
files actually contain EXEC SQL statements with embedded
SQL code). The execution times reported in this paper were
computed with ANTLR parsing turned on, presumably giving
our fuzzy parser a slight unfair disadvantage in the comparison
with the Raincode parser. There are limits in comparing tools
in practice, and we hope our explanation helps the readers to
interpret the results.

The Raincode parser reports its parsing times in a database
while our fuzzy parser uses Python’s time.time() to obtain
the execution time. For each file, we run each parser 20 times
and then calculate its average execution time. All of our tests
were performed on a 12-core, 24-threads 3.70 GHz processor,
with 32 Gb of 3500 MHz RAM. We did a few runs with
a warm-up phase of 20 runs which were not included in the



Av. file size (lines) Fuzzy total time (s) Full total time (s) Speedup fuzzy w.r.t. full
Test files (32) 15 0.03 9.35 312
NIST (410) 781 37,45 127.87 3.4
Use case post-migration (3014) 1715 273.01 959.12 3.5
Use case pre-migration (3014) 2675 1272.29 947.53 0.7

TABLE I: Execution times on all file sets

average, but saw no significant changes in our numbers: neither
for the fuzzy nor for the full parser. We therefore do not
include warm-ups in our final reported numbers. The summary
of our findings can be found in Table I. The average file size
for each codebase is included, as it turned out to be relevant for
the discussion to come. We then give the sum of the average
execution time over the entire codebase for both the fuzzy
and the full parser, and finally the speedup of using our fuzzy
parser versus the Raincode full parser, for each codebase.

When analysing these results, we observe that the fuzzy
parser offers a significant speedup when the files are small,
but loses its advantage as the average file size grows larger. A
likely explanation for this phenomenon is that the Raincode
full parser is I/O bound, meaning that reading a file of any
size is a fairly costly operation for them, while the parsing
task itself has become very optimised over their parser’s
20 year of existence. On the other hand, our fuzzy parser,
implemented in Python, scans the input files faster, but sees
its execution time grow as the files become longer and more
complicated due to the amount of regex matches to find, and
the complexity of keeping track of embedded condition and
loops to generate the CFG. This explains why the full parser
actually outperforms the fuzzy parser in the last line of Table I.
The files pre-migration are quite large and contain lots of
embedded structures (their inappropriate nestedness levels is
one of the reasons for refactoring), providing a worst case
for our fuzzy parser, which then becomes slower than the full
parser. Both parsers seem to have near-linear performance.

To confirm this phenomenon, we created a synthetic test set.
We took a base file of 1000 lines and grew it in size by copying
parts of is contents up to 30K lines. We then ran both parsers
on these manually-generated files to observe their behaviour.
The resulting graphs are shown in Figure 5. On the top graph,
we can observe that the fuzzy parser is faster when the files
remain under 10K lines, but that execution time keeps growing
with the file size, while the full parser’s execution time grows
more slowly, beating the fuzzy parser’s execution time for files
larger than 10K lines. The bottom graph plots each parser’s
execution time normalised by the file size, i.e. the “cost” of
running a parser. As expected, running the full parser on small
files has a very high cost, but this cost decreases sharply as
the file size grows to 5000 lines, and keeps decreasing slowly
afterwards. In a contrary fashion, the fuzzy parser is less costly
to run on files smaller than 5000 lines, then roughly equivalent
to the full parser’s cost up to files of 10K, but then gets slightly
costlier as file size increases. This aligns with expectations of
a semi-parser as something that works fast on small inputs.

To obtain these numbers, we did some initial optimisations
on our fuzzy parsing code, and pre-compiled it using the

Fig. 5: Graphs comparing both parsers’ performance on vari-
ous file sizes

Nuitka Python compiler [16], which eventually allowed us
to get a performance roughly equivalent to (or better than)
that of the full parser for most files in our experiments. We
would like to emphasise here that we are comparing the current
implementation of our fuzzy parser prototype to an established
highly-optimised industrial-strength parser. Further promising
optimisations of the fuzzy parser exist, in particular to get rid
of the slow regex module in favour of something faster.

While the execution times are significant (20 minutes for
our longest run), this is not how our parser would typically
be used in the industrial use case. In our experiment, we ran
every file one by one in order to be able to compute the average
execution time for all of them. As mentioned in Section III,
the fuzzy parser would be used either while in a meeting with
a customer, or ran on servers overnight after a full migration
task. In the first case, the files would still be computed one-
by-one, but only two at a time during discussions, requiring
0.42s on average for a pre-migration file, and 0.09s for its
post-migration equivalent, which is more than acceptable and
lower than the time that would be needed by the full parser
(respectively 0.31s and 0.32s on average for pre- and post-



migration files). In the second case, on a server, the process
would be run in parallel to a very computationally heavy
rewriting system for COBOL refactoring. The execution of
our fuzzy parser is fairly lightweight and thus multi-thread-
friendly, requiring only 5% of the processing power and 40Mb
of RAM on the computer used for the experiment. This means
that, putting the refactoring processes aside, up to 20 threads
could be run in parallel on that specific machine, resulting in
a total execution time of 77.2s to compute both sets (threads
are fully independent), or just over a minute. For an overnight
process, this overhead is again more than acceptable.

VII. DISCUSSION

In this section, we discuss the viability of using semi-
parsing techniques like fuzzy parsing, versus using full parsers,
to generate CFGs; criteria of correctness, efficiency and modu-
larity; as well as the semi-parser’s ability to be dialect agnostic
and its applicability to partial or non-compilable code.

A. Efficiency and Correctness

Both these criteria were discussed at length in the previous
section. While our CFGs generated with a semi-parser were
found to be correct when we analysed them in detail, using the
fuzzy parser will not always result in faster execution times as
compared to using the industrial-strength full parser we had at
our disposal, especially not for larger programs. We already
proposed a few solutions to this issue, the easiest one being
to parallelise the execution of the CFG creation process when
dealing with many files of larger size. However, execution
time is not the only factor we should consider when talking
about efficiency. The time resources that need to be invested
before getting results is also of importance. Of course, if a
full parser is already available for a given language, writing
a script that extracts CFGs from its parse trees may indeed
not be more complicated than writing a semi-parser. However,
whereas we did have access to such a full parser for the case
of COBOL (and welcomed it because it allowed us to compare
the correctness and efficiency of our fuzzy parser with that full
parser), especially when working with legacy languages we do
not always have access to such a full parser. When no parsers
are readily available, the time and expertise required to write
a semi-parser will be far less than what is needed for writing
a full parser. In our case, it took us a few months to obtain
satisfying results for our fuzzy parser versus the estimated 2-3
years it could have taken for writing a full parser [28].

B. Modularity

We can distinguish two important modularity concerns: the
ability to cherry-pick what we want to be contained (or not)
in the produced CFG, and the ability to parse other embedded
languages. When creating CFGs from parse trees, picking what
will be included in the final graphs is fairly easy, although
less flexible than the configuration file that our semi-parsing
solution proposes. In regard to parsing embedded languages,
combining two grammars into a single one is often difficult
to impossible as explained in Section II. As we experienced,

at least for the case of parsing embedding SQL in COBOL,
semi-parsing makes this possible relatively straightforwardly.

C. Dialect agnosticism

It is well-known that many languages, and legacy languages
in particular, have multiple dialects or versions, COBOL
being a particularly impressive case with up to 300 language
dialects [27]. Using a fuzzy parser, as long as the syntax
of the structures we are interested in, remains roughly the
same, the dialect used would not interfere much with the
CFG generation. In case of a diverging syntax for one of the
control flow structures considered, the only change needed
would likely be to modify the regex expression describing it
in the configuration file, making the adaptability of our fuzzy
parser to language dialects very high.

D. Ability to handle partial or non-compilable code

When using a full parser, the code needs to be complete
and syntactically correct in order to be processed. With fuzzy
parsing, this is not required (although severe syntax errors
within chosen structures will of course yield incorrect CFGs).
In our industrial use case, this proves very useful in cases
where the code is confidential, and the customer wishes to give
away as little as possible of their codebase. Imagine a contract
by which the customer agrees to give only the procedure
divisions to Raincode Labs, but not the data divisions, which
can be seen more critical to the customer because they contain
all variable definitions and values, while the former “only”
describes the execution. In this case, a full parser would need
to be partly rewritten to analyse this code, while with a fuzzy
parser we would be able to do so without any modification.

VIII. CONCLUSION

In this paper, we presented an alternative way of gener-
ating control flow graphs using the semi-parsing technique
of fuzzy parsing. We explained how such graphs could be
useful in the industrial use case of a migration process that
refactors PACBASE-generated COBOL into human-readable
and maintainable plain COBOL. The goal is to help improve
the customer’s trust in the migration process by using CFGs
to show that the control flow of their codebase pre and post
migration remains equivalent around critical database accesses.

Our choice of using semi-parsing allowed us to create a
tool to generate such graphs that is easy to configure and
adapt, can be run on partial or non-compilable code if required
by the customer, can leverage existing full parsers to analyse
embedded languages, and has execution times comparable to
what can be obtained from an industrial-grade full parser, at
least for the file sizes considered in the industrial use case.

In the future, we want to keep our focus on this industrial
use case. Still left to do is to compare the generated CFGs
before and after migration automatically, to highlight the
differences in them (or lack thereof) around the database reads
and writes. We will also work on a way to visualise these
differences in a compact way that would be suited to be
shown during live meetings with customers at Raincode Labs.



We also wish to create tool support to flag compared files
automatically if they have enough divergences to require some
manual analysis from engineers.

In parallel, working on an automated script to further vali-
date that our generated CFGs are correct is desirable, as well
as doing further optimisation work to address the scalability
issue of the fuzzy parsers’ performance for larger file sizes.
The avenues of dropping the re module or moving away from
implementing it in Python altogether, are the first that come
to mind. Finally, we wish to apply this CFG generation using
semi-parsing to other languages such as FORTRAN [7] or
Julia [26].
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