
Live Programming in Practice: a Controlled
Experiment on State Machines for Robotic Behaviors

Miguel Campusanoa,∗, Johan Fabryb, Alexandre Bergela

aISC lab, Computer Science Department (DCC), University of Chile, Beauchef 851,
Santiago Chile

bRaincode Labs, Brussels, Belgium

Abstract

Context: Live programming environments are gaining momentum across
multiple programming languages. A tenet of live programming is a development
feedback cycle, resulting in faster development practices. Although practition-
ers of live programming consider it a positive inclusion in their workflow, no
in-depth investigations have yet been conducted on its benefits in a realistic
scenario, nor using complex API.

Objective: This paper carefully studies the advantage of using live pro-
gramming in defining nested state machines for robot behaviors. We analyzed
two important aspects of developing robotic behaviors using these machines:
program comprehension and program writing. We analyzed both development
practices in terms of speed and accuracy.

Method: We conducted two controlled experiments, one for program compre-
hension and another for program writing. We measured the speed and accuracy
of randomized assigned participants on completing programming tasks, against
a baseline.

Results: In a robotic behavior context, we found that a live programming
system for nested state machine programs does not significantly outperform a
non-live language in program comprehension nor in program writing in terms
of speed and accuracy. However, the feedback of test subjects indicates their
preference for the live programming system.

Conclusions: The results of this work seem to contradict the studies of live
programming in other areas, even while participants still favor using live pro-
gramming techniques. We learned that the complex API chosen in this work
has a strong negative influence on the results. To the best of our knowledge,
this is the first in-depth live programming experiment in a complex domain.

Keywords: Live Programming, Controlled Experiment, Robot Behaviors, Live
Robot Programming, Nested State Machines

∗Corresponding author
Email addresses: mcampusa@dcc.uchile.cl (Miguel Campusano), jfabry@gmail.com

(Johan Fabry), abergel@dcc.uchile.cl (Alexandre Bergel)

Preprint submitted to Elsevier December 20, 2018



1. Introduction

In Live Programming [1], software development is augmented by performing
continuous real time modifications of running programs, which are accompanied
by a visualization of their execution. The goal of live programming is to improve
development by providing immediate feedback. This is done on the one hand by
integrating code changes without the need for restarting the program, and on
the other hand by the visualization reflecting the state of the running program.
A central tenet of live programming is that since this feedback allow developers
to immediately see the results of their changes, they will better understand the
code, yielding higher productivity.

To the best of our knowledge, there have been no studies on the advantages
of a live programming environment in a more practical settings. With this we
mean a nontrivial context where there are dependencies on possibly complex
external API’s, as well as the study considering both code comprehension and
code writing. Such experiments are however needed to establish whether the
advantages of live programming that have been shown in a restricted context
are also applicable in practice.

We have therefore researched live programming ‘in practice’ for both pro-
gram comprehension and code writing. For an ‘in practice’ setting we choose
the context of programming the behaviors of robots using discrete events. To
do this, several software abstractions have been proposed, and one notable ap-
proach is based on hierarchical state machines, e.g., XABSL [2] and the Kouretes
Statechart Editor [3]. These machines are used to program behaviors used for
the robots in the RoboCup competition, with notable results.

Work in the area of robotic behaviors consists of creating the overall way
of behaving of a robot, taking into account inputs generated by external algo-
rithms such as image recognition and map localization, and sending instructions
to, e.g., a robot navigation or object grasping algorithm. The robotics research
community makes such external algorithms available online, relying on middle-
ware to enable the joint operation of all these pieces of computation. ROS [4]
is the current de-facto middleware in robotics. It is a publish-subscribe mid-
dleware with support for over 100 different robots, and an extensive software
ecosystem providing a wide variety of possibilities for robot behavior program-
ming. The behavior program interfaces with the different robotics algorithms
through the ROS middleware. This results in a possibly complex API between
the program and the external functionalities, important in an experiment for
programming ‘in practice’.

ROS allows for two different ways to program robot behaviors using nested
state machines: the arguably popular non-live system SMACH [5] and our live
programming system LRP [6]. We hence performed user studies comparing
LRP with SMACH, to establish if robotic behavior program understanding and
writing benefits from live programming.

2



We performed two controlled experiments with within-subjects designs, each
to evaluate the accuracy and speed of development using live programming
versus a classical means for robot behavior programming. The first experiment
considers program comprehension and the second experiment considers program
writing. In this paper we present the results of our experiments.

Notably, the quantitative results of the experiment show us that there is no
difference in program understanding nor in program creation, both considering
correctness and time taken. However, the qualitative results contradict this, for
both experiments the subjects prefer to use LRP over SMACH. Our observations
on subject behavior lead to three possible causes for the low performance of LRP:
Live programming is not the panacea of software development, the complexity
of the ROS middleware and missed opportunities by the test subjects.

The paper is structured as follows: In the next section we present the live
programming system LRP, followed by the definition of our baseline: SMACH.
Then, we detail the overall experiment design. Section 5 details our first ex-
periment on program comprehension, and Section 6 talks about our second
experiment on code writing. We follow with an overall discussion of our results,
before treating threats to validity. Lastly, Section 9 discusses related work,
followed by conclusions and future work.

2. Live Robot Programming

LRP is a live domain specific programming language (live DSL) for the
specification of the behavior of robots [6]. A DSL is designed to take advantage
of the problem domain in their syntax and semantic to improve the developers
productivity [7]. The development of software for robotics can be improved by
using a DSL for a specific robotic domain [8, 9, 10].

An LRP program is the textual definition of a tree of nested state machines.
LRP adds two language features to the arguably well-known model of nested
state machines: lexically scoped variables and second, several types of actions
defined in states. Actions are Pharo Smalltalk [11] blocks code that have access
to the variables in scope. Actions can be executed when entering or exiting a
state, or executed in a loop when being in a state. All interaction with the robot
is performed inside these Pharo Smalltalk blocks, even guards for transitions.
As a consequence, LRP has no binding to a specific robotic API or middleware.

Transitions are connection between two states. When a state is executing,
the program can change to another state only defined by the transitions that
starts from the current state. When one of these transitions trigger, the current
state of the program changes to the one defined by the transition. LRP provides
several types of transitions to wrap common user cases when program robotic
behaviors:

• normal transitions: They are defined with a block code as a guard. When
the block returns true, the transition triggers, changing the current state.

• epsilon transitions: They trigger automatically, they are equivalent to
using normal transitions with a block code that always returns true.

3



• time transitions: These transitions are used to wait on a state for a defined
period of time. The time is defined in the definition of the transition. After
the time passed, the transition triggers, changing the current state.

• wildcard transitions: They work in a similar way as the normal transitions,
but they do not have an initial state. They may trigger in any state of the
machine. They are specially useful when the behavior has emergency cases
(i.e., a button to stop the behavior, no matter which state the behavior
is executing).

• exit transitions: They are used to exit a nested machine. They go from a
state inside the nested machine to a state in the parent machine.

The live nature of LRP allows for the direct construction, visualization and
manipulation of the program’s run-time state. While the program is running,
LRP allows the program to be modified at run-time without losing the program
state. This means that developers can add, remove and modify parts of the
program without always needing to restart it to apply them.

The direct manipulation in LRP is achieved firstly by having its integrated
development environment (IDE) visualize the running state machine as it is
being programmed. Secondly, the IDE also shows the values of variables at
runtime and these values can be inspected and manipulated in the IDE without
needing to change program code. Thirdly, developers can “jump” to other
states while the program is running. When the state machine is in one state,
a developer can force it to immediately transition to any other state in the
program, even when there are no connections between these states.

For security reasons, LRP provides a pause option to stop some of the liveness
features of LRP while writing a program. This pause stops the execution of
the code, while keeping most of the other liveness features. In particular, the
visualization of the program keeps updating, but the program will not execute
new code on the robot.

An example video of LRP is found online: http://bit.ly/LRPVideo. In
this video we show how the visualization evolves while a developer writes a
program.

While LRP is not coupled to a specific robot API, it does provide out-of-the
box support for four robot APIs. It provides support for ROS [4], the de-
facto standard middleware for robotics, the Aldebaran NAO robot1, the Parrot
AR.Drone2 and the Lego Mindstorms EV33.

The ROS bridge is provided by PhaROS [12], a Pharo Smalltalk API for
ROS. When this bridge is activated, LRP starts up with a separate UI that al-
lows developers to create subscriptions and publishers to receive and send data
to the robot via ROS. When LRP uses the ROS bridge, a pseudovariable called

1https://www.ald.softbankrobotics.com/en/cool-robots/nao
2http://developer.parrot.com/
3https://education.lego.com/mindstorms

4

http://bit.ly/LRPVideo
https://www.ald.softbankrobotics.com/en/cool-robots/nao
http://developer.parrot.com/
https://education.lego.com/mindstorms


robot is accessible in the source code. The data received from the robot is ac-
cessed via this pseudovariable that also has methods to allow sending commands
to the robot.

A full introduction to LRP is outside of the scope of this paper. For more
information we defer to the published literature [6, 13] and the official website:
http://pleiad.cl/lrp.

3. Baseline: SMACH

SMACH [5] is a library for building robot behaviors in Python when using
the ROS [4] robotic middleware. ROS is the de-facto standard middleware in
research on autonomous robots, and SMACH is its standard solution for writing
behavior as nested state machines.

The core of SMACH is independent of ROS. The machines and states pro-
vided by SMACH are Python classes.

The states in SMACH are subclasses of SimpleState. These classes must
define the method execute. This method is executed when the state is active,
returning an outcome. The outcome is a simple string that is used to select the
transition that triggers after the execution of the execute method.

Even when the core of SMACH is independent of ROS, there are several
classes that make it easier to compose SMACH with ROS. One of the most im-
portant used in the experiments is the state MonitorState. This state monitors
a data from the robot. It receives a callback function that is executed when the
data from the robot is received. This callback function should return True or
False.

When using ROS with SMACH, it is possible to access to the SMACH
visualization: smach viewer. This visualization shows the static representation
of the state machine, highlighting the state that is being executed.

We present an example video of a program being built in SMACH in: http:
//bit.ly/SMACHVideo. In this video we show the same example presented in
Section 2 for LRP. For brevity we did not record the program being written
from scratch.

Again, a full introduction to SMACH is outside of the scope of this paper.
For more information we refer to the published literature [5] and the official
website: http://wiki.ros.org/smach.

4. Overall Experimental Design

The two controlled experiments we conducted share a common design, which
is described in this section. Particularities of each experiment are described in
Section 5 and Section 6. We mostly follow the work of Jedlitschka and Pfahl to
report our studies [14]. To no repeat the same through both experiments, we
grouped information of the two into one in this section where possible.

Both controlled experiments are within-subjects design, i.e., subjects par-
ticipating in all treatments and we measure all the participations of the subject

5

http://pleiad.cl/lrp
http://bit.ly/SMACHVideo
http://bit.ly/SMACHVideo
http://wiki.ros.org/smach


in every treatment. We then cross-evaluate LRP with the baseline and measure
the impact of using LRP.

As part of the design of both experiments we first performed pilot studies to
fine-tune the difficulty level of the experiments and to ensure that the overall
duration of the sessions is acceptable.

4.1. Goals

The purpose of our two controlled experiments is to evaluate the accuracy
and speed of using LRP against a traditional approach for the development of
robot behavior. We focus on the impact of LRP on two development activities:
program comprehension and program writing. In the first experiment we intend
to evaluate the understanding of existing code, and in the second experiment
we aim to evaluate the building of programs.

4.2. Dependent and Independent Variables

In our experiments the dependent variables are the correctness of performing
a task in each experiment (i.e., the accuracy) and the completion time (i.e., the
speed). Our independent variables are the systems used in the experiment, LRP
and the baseline. Lastly, we created two tasks per experiment for subjects to
resolve. These tasks constitute another independent variable.

4.3. Baseline

We select SMACH as a baseline for our experiments because beyond its
popularity, Python and SMACH have key similarities with LRP: the language
is dynamically typed, SMACH programs are written as nested state machines
with approximately the same features as LRP, and SMACH also provides a
visualization of the running machines. We presented a full introduction to
SMACH in Section 3.

Note that we want to compare LRP and SMACH as complete systems and
avoid comparing individual features. Comparing both systems is ambiguous in
terms of which specific features have an impact on our results, however both
systems can be compared in terms of accuracy and speed. With this, we only
have results on complete systems, but we can not be sure which feature impacts
the most in our results.

4.4. Experiment Design

Because of the nature of the researched tools and the availability of the
necessary equipment, we chose to carry out controlled experiments with only
one participant at a time. Both experiments required computers with specialized
programs to work, such as ROS.

To minimize noise resulting from the technical aspect of running robots, we
conducted our experiment in a simulated environment, the Turtlebot robot4 in

4http://wiki.ros.org/Robots/TurtleBot

6

http://wiki.ros.org/Robots/TurtleBot


the Gazebo robotics simulator5. Note that simulation of robot behavior as part
of the development process is a standard procedure in the robotics community
as it allows one to abstract from hardware issues and accelerate the development
process.

The communication between the program and the robot is made by several
channels called topics. These topics have meaningful names following the ROS
naming convention. Moreover, we also give a list of all useful topics per experi-
ment with a clear description. This list can be used by the participants at any
point in the experiment.

Even when both experiments can be performed without our supervision, we
decided to supervise them to monitor, in parallel, the behavior of the partici-
pants in performing the tasks. This was extremely useful to arrive at several
conclusions for both experiments.

4.5. Participants

The participants were picked for their familiarity in ROS, state machines
as a programming model and their availability to be physically present in our
laboratory, since we require a particular setup.

As far as we know, the only people in Chile that work with ROS and robotic
behaviors using state machines are students from the University of Chile. In
particular, there is a robotic team in the university, the UChile Homebreakers
team6. This team participates in the RoboCup@Home league, made up of
Electrical Engineering students.

In the computer science department there was a class of software engineering
for robotic applications using ROS. We also used the students of this class as
participants of the experiments.

The participants only participated in one of the two experiments to avoid
a learning bias where they can improve or deteriorate their performance in the
second experiment. This is especially true because we reuse some codes from
the first experiment to create the second one.

4.6. Task Setup

In both studies, we performed a cross-evaluation experiment where we con-
ceived two different programs that express a robot behavior. The participants
then needed to understand and respectively write the robot behavior code. For
all tasks we also implemented a simple textual interface for the robot, allowing
it to ask the users to take certain actions and to provide them with information.

4.7. Work Session

Each work session take about 4 hours. The activity of each work session was
structured as follows:

5http://gazebosim.org/
6http://robotica-uchile.amtc.cl/about.html

7

http://gazebosim.org/
http://robotica-uchile.amtc.cl/about.html


1. Answer a questionnaire with personal information and background includ-
ing age, the education level and previous knowledge of several tools used
in the experiment.

2. Read a description of the system used in the first task. We call this phase
the Warm-up phase for the first task.

3. Evaluation of the first system, using the first task.

4. 15-minutes break.

5. Warm-up phase for the second task.

6. Evaluation of the second system, using the second task.

7. Answer a post-questionnaire with qualitative information about the par-
ticipant and the experiment itself.

Warm-up Phase. The participants are not required to have knowledge about
the systems that we are going to test. To achieve a necessary level of knowledge,
we give them reference material of the system to use. The reference materials for
LRP and SMACH explain a simple example that gives the required knowledge of
the features that are going to be used in the experiment itself. The participant
can use the reference material in the experiment at any time. The materials
also contain an explanation of the communication API to the robot used by the
program. All this material is online at: http://bit.ly/2j1P1Zb.

At the end of the material there are two exercises each participant has to
resolve. These two exercises are a direct application of the knowledge acquired
from the learning material. The reference material is optional to read, but the
resolving of the exercises is mandatory. The reference material and the exercise
differ in each experiment, because in the experiments we use different features
of the languages. The reference material contains the necessary information to
complete the experiment, but no more. This is to make sure that participants do
not get confused by extra information that is not necessary for the experiment.

Post-Questionnaire Phase. After both tasks are completed, i.e., at the end of
the experiment, the participant is asked to fill out a final form requesting for
qualitative data about the experiment, to establish the opinion of the partici-
pants about the experiment, the different systems used and their results. This
includes, amongst others, questions on the difficulty of the tasks, a comparison
of both systems, if they would use this type of system again, and a space for
freeform feedback.

5. Controlled Experiment: Program Comprehension

The first experiment we performed aimed to measure the correctness and
speed of using LRP against using SMACH. The complete programs for both
tasks, questionnaires and scans of filled-in questionnaires are available to down-
load at http://bit.ly/2jtUvbD.

5.1. Goal

In this experiment we answer the following research questions:

8

http://bit.ly/2j1P1Zb
http://bit.ly/2jtUvbD


Q1. Does live programming reduce the time in understanding program code for
robot behavior written as state machines, compared with a classical approach
without using live programming?

Q2. Does live programming increase the correctness in understanding program
code for robot behavior written as state machines, compared with a classical
approach without using live programming?

Live programming is a paradigm that has been proposed to accelerate the
development of programs. An important task in developing programs is under-
standing existing code. However, there has been no extensive report published
on whether live programming has an impact on program understanding, neither
in correctness of understanding nor time taken.

The null hypotheses and alternative hypotheses for the previous questions
are:

• H01: Live programming does not impact the time required in understand-
ing program code for robot behavior written as state machines.

• H11: Live programming reduces the time required to understand program
code for robot behavior written as state machines.

• H02: Live programming does not impact the correctness in understanding
program code for robot behavior written as state machines.

• H12: Live programming increases the correctness to understand program
code for robot behavior written as state machines.

5.2. Experiment Design

As mentioned in Section 4, we designed a controlled experiment using cross-
evaluation, which requires two tasks per experiment. The tasks of this experi-
ment are:

• Task A: The Turtlebot performs an object delivery service, where an
object is sent to a given destination and the receiver can send an object
back.

• Task B: The Turtlebot broadcasts a message to different locations, and
the message receiver can request for clarification of the message.

Figure 1 is a screenshot of Task A in SMACH and Figure 2 is a screenshot
of the same task in LRP.

We randomized the participation of the subjects in every work session (Work
Sessions are explained in Section 4.7) while having similar number of partici-
pants per work session. We designed 4 different work sessions. Each participant
participates in exactly one of the four work sessions. The different work sessions
are:

9



Figure 1: Task A of program comprehension experiment in SMACH.

Figure 2: Task A of program comprehension experiment in LRP.

10



• W1: First Task A with LRP, then Task B with SMACH.

• W2: First Task A with SMACH, then Task B with LRP.

• W3: First Task B with LRP, then Task A with SMACH.

• W4: First Task B with SMACH, then Task A with LRP.

5.3. Pilot Study

We first conducted a first pilot study to assess the feasibility of the tasks and
to uncover possible issues. We found that the test subjects considered the tasks
to be too easy and some of the questions to be unclear. We modified the tasks
and ran a second pilot study to confirm that this version of the experiment was
clear and at an acceptable difficulty level.

In the first pilot we noticed an important threat of a common development
practice: If we give meaningful names to states, transitions, etc, the tasks were
solvable only by using these names instead of reading the source code, executing
the program or using other features of the systems. Even with this being a com-
mon practice in developing software, this adds a strong bias to the experiment
that had to be removed. If we keep the meaningful names, we can not measure
the system by their features, but only by their visual representation (which are
very similar).

In the second pilot we used obfuscated names and noticed how the subjects
did not try to understand the program by the names, but they immersed in the
systems, using all available features of each system.

5.4. On Reducing Biases

We designed this experiment to reduce bias as much as possible. We found
and reduced bias on the tested features and the name of the variables.

Reducing bias of difficulty from the task and used features. The tasks were de-
signed to use a wide variety of nested machine features without being trivial or
too difficult, avoiding a bias where developers would understand the programs
too quickly or would not understand the programs at all.

Both tasks, while different, are built in a similar way. Both tasks have:

• A comparable number of states and transitions.

• Only one nested machine.

• States in which the program waits for a couple of seconds.

• Several states where the robot moves.

• Non-straightforward execution, i.e., several paths and execution loops.

• Use of variables.

• Obfuscated names (explained in detail below).

11



We excluded functionalities that could be interesting but may benefit the
performance of one of the system over the other. For example:

• Concurrent behaviors: SMACH provides concurrent machines, LRP does
not.

• A transition from every state in the machine to one in particular: LRP
provides such ‘wildcard’ transitions, SMACH does not.

Reducing naming bias. We decided to obfuscate the names of every entity in
the system because we want the users to understand the program not just by
looking at meaningful names. We see this as an important possible bias for
program understanding and hence wished to remove it. For example, for the
robot to move to a point in the map it needs to receive the exact point to which
to move. This can be seen in the source code if we give a meaningful state name
like WaitingForDestination: the developer can only look at the state name to
understand that the robot is waiting to receive that information in that state.
This is a problem because to understand the program, the subject may just
look at the meaningful names and not look at the source nor try to understand
the program by running it or any other means, hence adding a bias in the
experiment. The subject could just identify the names of the states and answer
the questionnaire according to those meaningful names.

To avoid this problem, we replaced every meaningful name using a string
formed by 4 random characters. We also decided to avoid using names like
stateX to indicate states, for example. This is because the creation and use of
states – and other program elements – in both systems are quite different. As
before, we want the developers to experience this difference by not only looking
at meaningful names, but looking at the program structure, further removing
bias.

5.5. Work Sessions

For the evaluation we prepared one computer with two screens. One screen
shows the simulated robot and the communication interface between the sub-
ject and the robot, we call this screen the Robot Space. The second screen
shows the source code and extra features that the systems may provide, e.g., a
visualization. We call this screen the Development Space.

For the LRP system, the Development Space contains the IDE and a window
showing all the communication channels used by the program to the robot. In
the IDE the developer can see the source code of the program and the live
visualization. For the SMACH system, the Development Space has the source
code in a Sublime Text editor7 and a terminal with two tabs. One of the tabs is
ready with the command to run the program and the other tab is ready with the
command to open the run-time visualization. When the visualization is open,
it is also displayed in the Development Space.

7https://www.sublimetext.com

12

https://www.sublimetext.com


5.6. Warm-up Phase

In this experiment, the warm-up phase consists in reading reference mate-
rial and solving an exercise. In the exercise, the subjects extend the example
presented in the reference material, focusing on several features that the subject
needs to know before doing the experiment. These features are:

• Creating a state.

• Adding a state, i.e., adding the necessary transitions to make the state
reachable in the program.

• Sending data to the robot.

• Receiving data from the robot.

5.7. Evaluation phase

For each of the two tasks the subjects should answer a questionnaire that
serves to measure how well they understand the program. Each questionnaire
has 17 questions, designed to cover the different strategies we expected the
subject would use in a program comprehension task. Some examples are:

• What is the number of outgoing transitions from state X ?

• In which state does the robot do something?

• What should happen for the robot to go from state X to state Y ?

For example, to answer the last question, subjects could look at the source
code. For LRP, they could look at the event and the transition that connects
both states:

(state X (...))

(on hfjl X -> Y)

(event hfjl [" action code "])

(state Y (...))

In this example, the answer is given by the action code of the event named
hfjl : if it returns true the transition will be taken. For SMACH, subjects could
look at the transition of the state X that connects to state Y, then look at the
state X to see what the state does to trigger this transition:

class X(smach.State ):

def __init__(self):

smach.State.__init__(self ,

outcomes =[’itul’, ’fjhd’])

def execute(self ,ud):

qbqc = #do something to fill this variable

if qbqc is None:

return ’itul’

else:

return ’fjhd’

def main ():

sphv = smach.StateMachine ()

13



Part. Work Session LRP
Score

SMACH
Score

LRP
Time
(min)

SMACH
Time
(min)

LRP
Exp

1 W3 16 16 100 76 Yes
2 W4 14 13 49 96 Yes
3 W1 16.5 15 47 33 No
4 W2 15.5 16 48 54 No
5 W4 16 15 55 60 No
6 W1 10 12 47 34 No
7 W2 15 10 45 55 No
8 W3 14 15 53 50 Yes
9 W3 15 15 67 45 No
10 W4 16 17 63 68 No

Average 14.8 14.4 57.4 57.1
Median 15.25 15 51 54.5

σ 1.792 2.010 15.787 18.229

Table 1: Quantitative results of the program comprehension experiment. We can see the
average score of LRP is slightly better than the average score of SMACH. SMACH average
time is slightly better than LRP average time.

with sphv:

smach.StateMachine.add(’X’, X(),

transitions ={’itul’: ’Y’, ’fjhd’: ’Z’})

To answer the previous question in SMACH, subjects should look at where
state X is added, then see that the transition named itul is responsible for going
from X to Y. Lastly, they should go to the definition of the state X and find
out when the execute method returns the string itul.

We designed some questions that can only be answered by running the pro-
gram. This is because we wanted the experiment to treat the complete running
system such that some of the properties of live programming come into play.
Without these questions, the questionnaire may be answered by looking at a
static representation of the visualization and the source code, where it does not
matter if the system is a live programming environment or not.

At the end of each task, we collect the questionnaire and note how much time
it took to finish the questionnaire. When evaluating the answers, we counted
how many right answers the subject had. There are some questions where
subjects had to justify their answers. For questions where the answer is wrong,
but the justification is correct, we added half a point.

5.8. Results

We have ten test subjects, all students from the engineering faculty of the
University of Chile. All subjects are at least in their fourth year. Eight students
are undergraduate students, 2 of them are graduate students. There are 6
students from Computer Science and 4 students from Electrical Engineering.
Each experiment session took about four hours.

14



Treatment P value U value Difference?
LRP score vs SMACH score 0.6455 43.50 No
LRP time vs SMACH time 0.8970 48 No
LRP score: Task A vs Task B 0.9048 11.50 No
SMACH score: Task A vs Task B 0.3968 8 No

Table 2: Mann-Whitney, two-tailed test for several data combinations of the program com-
prehension experiment. The data combinations presented are: LRP vs SMACH in score and
time to complete the tasks; score of Task A vs Task B of LRP and SMACH. With this test,
we see no significant difference in any data combination for the program comprehension ex-
periment: every P value is greater than 0.05. We present the U value for better comparison
of the statistical test used here.

Two of the subjects state that they have a Beginner level of SMACH and
2 more state they have a Knowledgeable level of SMACH. Three of them state
that they have a Knowledgeable level of LRP. The other subjects state that
they do not have any knowledge of LRP or SMACH, however, all of them state
that they have knowledge of Python, from Beginner to Advanced.

5.8.1. Quantitative Results

We present the quantitative data of the experiment on Table 1. The LRP
and SMACH columns are the scores obtained on the questionnaire for the tasks
carried out using LRP and SMACH respectively. The table presents the time
to complete the tasks done in LRP and SMACH. The second column shows
the type of work session of the subject. The last column indicates whether the
participant has some experience using LRP.

We analyze these results considering four data combinations: score and time
between Task A and Task B, and score and time between SMACH and LRP.

At the end of Table 1 we can see the average, median and standard deviation
of the data. These figures give a slight advantage to LRP in accuracy but a slight
faster speed on SMACH.

After completing this analysis, we need to employ a statistical test to verify
whether these differences are significant. First, we analyze the normality of the
data, as this may impact the statistical test to employ. Running the Shapiro-
Wilk test on our four data combination indicates that only two combinations are
normally distributed: (i) the scores and times to complete Task B and (ii) the
scores and times of SMACH. Since not all the data are normally distributed, we
use the Mann-Whitney test to determine whether the set of values are different.

In Table 2 we first see the values of the Mann-Whitney, two-tailed test for
LRP vs SMACH. In this table we present two values: the probability value
P and the Mann-Whitney statistic value U. The P value allows us to test the
statistical significance of the data, when P < 0.05, we claim that the data is
significantly different with a confidence level 95%. The U value is a component
of the Mann-Whitney test used to calculate the P value: the smaller the value of
U, the smaller the value of P. In Table 2 we reported the U value for comparison
when replicating the Mann-Whitney test.

15



LRP Score SMACH Score LRP Time (min) SMACH Time (min)
Average 14.857 14.286 53.143 49.857
Median 15.5 15 48 54

σ 2.048 2.250 8.114 12.159

Table 3: Statistical results of the program comprehension experiment removing participants
with LRP experience. The average score of LRP improves, but the average score of SMACH
diminishes from Table 1. The average time of LRP and SMACH improve from Table 1, with
SMACH being faster again.

Treatment P value U value Difference?
LRP score vs SMACH score 0.5746 19.5 No
LRP time vs SMACH time 0.6911 21 No

Table 4: Mann-Whitney, two-tailed test for score and time of LRP vs SMACH for the program
comprehension. These results do not take into account participants with LRP experience. As
in Table 2, there is no significant difference in score nor time: P > 0.05.

For both score and time P > 0.05, which means there are no significant
differences. As a consequence, the observed differences are likely due to the
participants and experiment setting, and cannot be related to the treatment of
the experiment in SMACH or LRP. Moreover, the average and median of each
of the four data combinations indicates that there is no tendency that could
be increased by including more participants. We therefore conclude that the
number of subjects in the experiment is sufficient to support our claim of there
being no significant difference.

We have produced two tasks, A and B, completed in both LRP and SMACH.
Lastly, we have compared the results of tasks A and B for each treatment, as
seen in the last two rows of Table 2. This figure indicates that both task A and
B are similar since P > 0.05.

5.8.2. Quantitative results: Participant with no LRP Experience

In Table 1 we see that 3 participants had experience in using LRP before
the experiment was conducted. We made an analysis of the data without these
3 participants.

Here we use the same analysis used with the original results. Without taking
account the experienced LRP participants, LRP still has a slight advantage in
terms of correctness against SMACH. However, SMACH improves a lot its speed
compared to LRP. We can see these results in Table 3.

In Table 4 we can see, without taking account participants with experience
using LRP, that there is no statistical differences of the score and time using
LRP or SMACH of the completed tasks (P > 0.05 ).

5.8.3. Qualitative Results

We present the raw data of the subjects’ opinions on Table 5. All the ques-
tions presented here have a score ranging from 1 to 5.

16



Part. Is LRP better than
SMACH?

Would use SMACH Would use LRP

1 4 2 4
2 5 2 5
3 4 4 4
4 5 1 3
5 4 4 4
6 3 4 4
7 4 3 4
8 4 4 4
9 3 4 4
10 4 3 4

Avg 4 3.1 4

Table 5: Qualitative data of the program comprehension experiment. The worst result is 1
and the best is 5. The average results give a preference of LRP over SMACH for the subjects.

An important qualitative result is that every subject in the experiment thinks
that it is easy to understand programs written in LRP, except for one. In
contrast, with SMACH there are mixed opinions: 6 subjects think that is easy
to understand programs using this platform and 4 subjects think that it is hard.
Moreover, the subjects also think that LRP is better for program understanding
than SMACH, with an average result of 4. When asked if they would prefer
to use one system over the other, LRP also has better results, with an average
score of 4 against an average result of 3.1 for SMACH.

Of the ten participants, LRP got three positive comments claiming that it
was easier to understand code (translated from Spanish): “In LRP there are
less concepts, so it is easier to understand”, “LRP was easier to understand”,
“In LRP the code was easier to understand”. There is also a comment about
a specific feature in LRP that connects the visualization with the source code
by clicking on an element of the visualization: “The visualization of LRP has a
nice integration with the source code”. However, there are some positive com-
ments about the SMACH visualization, where LRP falls short: “The SMACH
visualization is tidy and you can see everything, even the state of the nested
machine”, “The SMACH diagram was very easy to follow, instead, the LRP
diagram was harder to follow”.

5.9. Observations on Subject Behavior

Important benefits of live programming are said to stem from immediately
seeing the effects of program changes. In this experiment we however noticed
one important behavior of the subjects: they did not modify the source code
when trying to understand the program. Instead they mostly used other means,
such as the visualization of the program at run-time or taking notes. It therefore
makes sense that LRP has the same performance as SMACH. There is no live

17



programming advantage, given that the subjects did not modify the programs
at all.

5.10. Conclusions on Program Comprehension

The quantitative results of the experiment disallow us to reject both null hy-
potheses H01 and H02: there is no difference between using LRP or SMACH to
understand complete programs for robotic behaviors, both considering correct-
ness and time taken. In contrast to this, the qualitative results of the experiment
reveal that the subjects actually think that the answer of the research question
is positive. Concretely, the subjects’ opinions are that it is easier to understand
programs written in LRP and moreover they prefer to use LRP over SMACH.

Put differently: while the users’ opinions about the different systems con-
firm the tenet of live programming yielding a better developer experience, the
quantitative data show that in this experiment the developers’ performance is
actually unchanged.

6. Controlled Experiment: Program Writing

The goal of our second experiment is to measure the accuracy and speed of
writing a program for robot behavior using live programming. As mentioned
in Section 4, we compare LRP with SMACH using a within-subjects design.
The complete programs for both tasks, questionnaires and scans of filled-in
questionnaires are available to download at http://bit.ly/2jbixXD.

6.1. Goal

We aim to answer the following research questions:

Q3. Does live programming reduce the time in writing state machine programs
for robot behavior, compared with a classical approach without using live pro-
gramming?

Q4. Does live programming increase the correctness in writing state machine
programs for robot behavior, compared with a classical approach without using
live programming?

Live programming has been proposed to accelerate the development of pro-
grams, which logically includes writing the program. Program writing in live
programming has been studied before, though there are no in-depth studies
that consider the domain of robot behaviors nor the state machine paradigm
nor even with a complex API.

The null hypotheses and alternative hypotheses for the previous questions
are:

• H03 : Live programming does not impact the time required in writing
state machine programs for robot behavior.

18

http://bit.ly/2jbixXD


• H13 : Live programming reduces the time required to write state machine
programs for robot behavior.

• H04 : Live programming does not impact the correctness of the solution
when writing state machine programs for robot behavior.

• H14 : Live programming increases the correctness of the solution when
writing state machine programs for robot behavior.

6.2. Tasks to Evaluate

We used some elements of the program comprehension experiment explained
in Section 5 and simplified them. In this experiment, each program is divided
in 4 steps, where the first step (Step 0) is a warm-up session where subjects
get used to the development environment. Each step represents a part of a
complete program, by finishing the last step, the subjects complete the overall
behavior. After the warm-up step, the next 3 steps have an increasing level of
difficulty and come with a time limit: 10, 20 and 30 minutes each. The last step
combines multiple functionalities that are used in the previous steps, adding
new functionalities only presented in this step.

We present the two tasks here:

• Task A: In this task the Turtlebot greets someone in a place specified by
a person.

• Task B: The Turtlebot should deliver a message to different, fixed desti-
nations.

A comparative screenshot of the complete Task A in SMACH and LRP can
be seen in Figure 3 for SMACH and Figure 4 for LRP. These images present
the program and visualization of Task A for SMACH and LRP respectively.

We randomized the participation of the subjects in every work session (Work
Session are explained in Section 4.7) while having similar number of participants
per work session. We designed 4 different work sessions. Each participant
participates in only one of the four work sessions. The different work sessions
are:

• W1: First Task A with LRP, then Task A with SMACH.

• W2: First Task A with SMACH, then Task A with LRP.

• W3: First Task B with LRP, then Task B with SMACH.

• W4: First Task B with SMACH, then Task B with LRP.

6.3. Pilot Study

As before, we performed a pilot study before conducting the experiment.
The most important lesson learned in this pilot was the amount of time needed
to perform the complete experiment. We originally miscalculated, resulting in
5:30 hours in total. We had to perform 2 pilot studies to reach an acceptable
time of 4 hours in total.

19



Figure 3: Complete program of Task A in SMACH for program writing experiment.

6.4. Reducing Bias

We designed this experiment to reduce bias as much as possible. We reduced
the bias of having two different tasks and reduced the bias of a subject not being
able to end a step.

6.4.1. Reducing bias of used features

The tasks were built to not be too difficult, giving the subjects higher odds
to finish every step, which reduces the bias of not having any results at the end
due to a high complexity. We removed features that proved too complex to
understand in the given span of time, like concurrent behaviors.

Also, the tasks were designed to use the same functionalities, while not
building the same program. We included this property in every step, except in
Step 0 which is exactly the same. This is to allow the subjects to understand
the basics of each system in the same way, reducing bias.

6.4.2. Reducing different starting point bias

When building a step, every subject has the potential to build the program
in many different ways. Since the program is added to in each step, it could
end up differing greatly between subjects. If we measure steps using a different
program as a starting point, we may introduce a bias. To avoid this, each step
starts with a base program that is provided by us.

By introducing a new program at every step, we may introduce a bias of
understanding in the different systems. If the base program is more difficult to
understand in one system, then the subjects may have an additional problem to
extend it in this system. However, in our experiment of program comprehension,
presented in Section 5, we have seen that there is no significant difference in

20



Figure 4: Complete program of Task A in LRP for program writing experiment.

program understanding between LRP and SMACH. We can therefore use this
way of working without adding any significant bias.

Lastly, by giving a base program to start with, we can reduce bias when
subjects do not finish a step. If a subject does not finish a step, the subject can
still continue with the next step using the base program.

6.5. Work Sessions

For the evaluation of this experiment we prepared two computers, one with
one screen and the other with two screens. The computer with two screens
represents the robot environment: in one screen we have the simulation and the
other we have the textual user interface of the robot.

The computer with one screen represents the development environment. For
LRP, this screen contains the IDE to write programs, the error window and the
window that creates the communication channels between the robot and LRP.
Additionally, it contains another window with code snippets of recurrent code
patterns in LRP. For SMACH, the development environment contains, in full
screen, PyCharm, a Python IDE8. In PyCharm there are always two open tabs,
one with the current program being written, and another with code snippets
of recurrent code patterns similar to those in LRP. Finally, there is a terminal
ready to execute the SMACH visualization.

6.6. Warm-up phase

In the warm-up exercise in this experiment the subjects should write a pro-
gram in the system, instead of on a paper. We decided to go with this because

8https://www.jetbrains.com/pycharm/

21

https://www.jetbrains.com/pycharm/


this would be the first attempt of the subjects to write a program and use the
system. This may introduce some beginner errors and we want to reduce such
a threat in our evaluation.

As we earlier explained, the code the subjects should write is the program
for Step 0, which is the same for both systems.

6.7. Evaluation phase

For both tasks, subjects should write a program divided in three incremental
steps. Step 1 and Step 2 are guided steps in terms of the states and transitions
the subjects should write. Step 3 is the most open step, with no guide to how
many states and transitions the subjects should write, but descriptive enough
for the subjects to understand what they should do. Step 3 features the same
functionalities presented in the previous steps, but adding a behavior where the
robot turns 180 degrees.

The turning behavior is an important addition because to the subjects it
is initially unclear how to achieve the correct amount of degrees of turn. Test
subjects need to experiment with different turn speeds or times. This exemplifies
a scenario where developers are not sure which parameters an algorithm needs
at the beginning and they need to fine-tune some parameters until they find the
right values.

With every step we measure the correctness and the time to complete the
step. Every step has a time limit: 10, 20 and 30 minutes respectively. When
subjects could not complete all the steps, we scored only the correct parts
they managed to write. Recall that in Section 6.4.2, we mentioned that at the
beginning of each step every subject starts with the same base program, hence
not completing a previous step does not introduce a strong bias in the results.

Each step has a different scoring function due to the difference in difficulty.
The maximum points for each step are: 8, 11 and 19. Because the systems
are different, it is not trivial to be fair in scoring each task. To do this we
divided each program in smaller sections and scored them independently. The
division is: sending data to the robot, receiving data from the robot and extra
functionalities9.

6.8. Results

We have 10 test subjects who are all students from the engineering faculty of
the University of Chile, but they are not the same from the previous experiment.
All subjects are at least in their fourth year. Six of them are undergraduate
students and the other four are graduate students. All of the students are from
the Computer Science Department.

All the participants, except one, declared having no knowledge of SMACH,
while 2 of them stated that they have a Beginner level of LRP. Notably, only 2
students declared not having any knowledge in robotic development. Moreover,

9A complete table of the scoring in each step for each task can be found in http://bit.

ly/2kpWGg5

22

http://bit.ly/2kpWGg5
http://bit.ly/2kpWGg5


Part. Work
Session

LRP Score SMACH Score LRP Exp

S1 S2 S3 Σ S1 S2 S3 Σ
1 W3 6 7 16 29 7 6 7 20 Yes
2 W4 8 11 19 38 8 11 19 38 No
3 W2 5 11 19 35 7 7 19 33 No
4 W3 6 10 12 28 8 11 18 37 No
5 W4 8 11 19 38 6 11 10 27 No
6 W1 8 10 18 36 8 6 19 33 No
7 W1 6 11 19 36 7 11 19 37 No
8 W2 8 10 19 37 8 11 19 38 Yes
9 W4 6 11 18 35 7 4 13 24 No
10 W3 4 7 18 29 8 10 18 36 No

Average 6.5 9.9 17.7 34.1 7.4 8.8 16.1 32.3
Median 6 10.5 18.5 35.5 7.5 10.5 18.5 34.5

σ 1.36 1.51 2.10 3.7 0.66 2.6 4.23 6.1

Table 6: Score for every step of the program writing experiment, for both LRP and SMACH.
Σ represents the sum of scores of the three steps. We can see LRP has a slight advantage over
SMACH in tasks S2, S3 and the sum of the three tasks. SMACH has a slight advantage in
task S1.

all of the students declared to have at least a Beginner level of Python, with 2
of them declaring an Advanced level in Python.

6.8.1. Quantitative Analysis

Table 6 and Table 7 present the raw data. Table 6 gives the score for every
step and the sum of the three steps. Table 7 indicates the time to complete
each step and the total time to complete the three steps. If a subject did not
finish the step, we show this with an “x”. The sum column considers an “x”
as the maximum time allowed for completing the task (S1 = 10 minutes, S2 =
20 minutes, and S3 = 30 minutes). For both tables, the last column presents if
the participant has some experience using LRP. Because it may not be fair to
give the maximum time allowed when summing the time of the steps, Table 8
presents the normalized time of completed steps only.

In Table 6 and 7 we present the average, median and standard deviation
of the data. With these figures we can see a slight advantage to LRP for the
sum score of the tasks. The average and median score for S2 and S3 is higher
with LRP than with SMACH. For the sum time, participants completed their
tasks slightly faster using LRP. This claim is true for each task, except for step
S2, where time LRP and SMACH are tied. When comparing only the time
of completed steps by normalizing the time between 0 and 1, we can see that
participants still completed their tasks slightly faster using LRP, as shown in
Table 8.

Similar to the previous experiment, we measured the normality of the data
before measuring the significance between the score and time values. Not all

23



Part. Work
Session

LRP Time SMACH Time LRP Exp

S1 S2 S3 Σ S1 S2 S3 Σ
1 W3 x x x 60 x x x 60 Yes
2 W4 10 18 23 51 10 20 30 60 No
3 W2 x 20 19 49 x x 27 57 No
4 W3 x x x 60 10 20 x 60 No
5 W4 10 20 27 57 x 20 x 60 No
6 W1 10 x x 60 10 x 25 55 No
7 W1 x 20 26 56 x 20 25 55 No
8 W2 7 x 19 45 9 18 19 46 Yes
9 W4 x 20 x 60 x x x 60 No
10 W3 x x x 60 9 x x 59 No

Average 9.7 19.8 26.4 55.8 9.8 19.8 27.6 57.2
Median 10 20 28.5 58.5 10 20 30 59.5

σ 0.9 0.6 4.32 5.25 0.4 0.6 3.5 4.21

Table 7: Time to complete the program writing experiment. The letter “x” means that a
step is not finished within the time limit. Σ represents the total time to complete the three
steps. Whenever there is an “x”, Σ considers the maximum time per step. We can see LRP
has a slight advantage over SMACH for task S1, S3 and the sum of the three tasks. LRP and
SMACH are tied in task S2.

the data sets are normal. We therefore employ, as the previous experiment,
the Mann-Whitney test. Between the sum score and the sum time, there is no
statistical significance of using LRP vs SMACH: P > 0.05 (In Section 5.8.1 we
explained the P and U values of the Mann-Whitney test). Table 9 presents this
data.

Similar to the program comprehension experiment, there is no statistical
difference in score nor time for each step, despite slightly better values for LRP.
Again, this is due to the experimental setting and it cannot be related to the
treatment.

We also compared the score of tasks A and B for each treatment to measure
if the two tasks are comparable, as seen in the last two rows of Table 9. These
two test results indicate that both tasks A and B are comparable and similar
in their difficulty, hence reducing the bias that one task could be more difficult
than the other.

6.8.2. Quantitative results: participants with no LRP Experience

In the Tables 6 and 7 we see that 2 participants had experience in using LRP
before the experiment was conducted. We analyzed the data without these 2
participants.

Without taking into account the experienced LRP participants, LRP still
has a slight advantage in terms of correctness and speed against SMACH, while
SMACH is more stable when measuring time. For each task, LRP has a slight
advantage for S2 and S3, while SMACH has a slight advantage in S1, for both

24



Part. Work
Session

LRP Time [0-1] SMACH Time [0-1] LRP Exp

S1 S2 S3 S1 S2 S3
1 W3 x x x x x x Yes
2 W4 1.00 0.90 0.77 1.00 1.00 1.00 No
3 W2 x 1.00 0.63 x x 0.90 No
4 W3 x x x 1.00 1.00 x No
5 W4 1.00 1.00 0.90 x 1.00 x No
6 W1 1.00 x x 1.00 x 0.83 No
7 W1 x 1.00 0.87 x 1.00 0.83 No
8 W2 0.70 x 0.63 0.90 0.90 0.63 Yes
9 W4 x 1.00 x x x x No
10 W3 x x x 0.90 x x No

Completed Steps 14 15
Average 0.886 0.926
Median 0.95 1

σ 0.139 0.101

Table 8: Table 7 with normalized times between 0 and 1. There are 14 and 15 completed
steps for LRP and SMACH respectively. We consider only the completed tasks to calculate
the average, median and σ. We can see that LRP has a slight advantage over SMACH.

correctness and speed. Table 10 and Table 11 presents this data. Even in
Table 12, with the statistical results of the normalization of the time between
0 and 1, LRP keeps its slight advantage over SMACH, and SMACH remains
more stable.

As with the data including the participants with LRP experience, the Mann-
Whitney test indicates that scores and time between LRP and SMACH are not
significantly different. Table 13 shows the results of the test.

6.8.3. Qualitative Analysis

The raw data of the subjects’ opinions is in Table 14. All the questions
presented here have a score from 1 to 5.

Also in this experiment we get a positive qualitative result in favor of LRP.
Six of the subjects think that it is easy to write programs in LRP, while the
other four think it is hard. In SMACH five subjects think that it is hard to write
programs, while the other 5 think that it is easy. It is important to notice that
only two of the subjects answer that LRP is hard and SMACH is easy. Moreover,
the subjects in general think that LRP is a better tool to write programs, with
a score of 3.6 of 5, while for SMACH the score is 3.2. While the results are not
as strong as the experiment in program comprehension for this kind of result,
LRP still gets an advantage over SMACH.

We asked the subjects if the liveness features of LRP help them to write
and debug programs. Notably, every subject answered positively to both ques-
tions. Moreover, LRP and its liveness features has a lot of positive comments

25



Treatment P value U value Difference?
LRP sum score vs SMACH sum score 0.7286 45 No
LRP sum time vs SMACH sum time 0.7636 46 No
LRP sum score: Task A vs Task B 0.0556 3.5 No
SMACH sum score: Task A vs Task B 0.8968 11.5 No

Table 9: Mann-Whitney, two-tailed test for several data combinations of the program writing
experiment. The data combinations presented are: LRP vs SMACH in score and time of the
tasks; score of Task A vs Task B of LRP and SMACH. With this test, P value is greater
than 0.05 for every there is no significant difference in any data combination for the program
writing experiment. The U value is also given for further reference.

LRP Score SMACH Score
S1 S2 S3 Σ S1 S2 S3 Σ

Average 6.38 10.25 17.75 34.38 7.38 8.88 16.88 33.13
Median 6 11 18.5 35.5 7.5 10.5 18.5 34.5

σ 1.41 1.3 2.22 3.57 0.7 2.62 3.22 4.78

Table 10: Statistical results of the program writing experiment removing participants with
LRP experience. The table shows the score of the every task and the sum of the tasks. The
average scores are similar to the one presented in Table 6. Again, LRP has the advantage on
tasks S2, S3 and the sum of the scores, and SMACH has the advantage on task S1.

(translated from Spanish): “LRP is good because it allows one to jump between
states”, “(with liveness) it is easier to see which step causes the problem”, “the
jump function is for finding out if a state is working correctly”, “(with liveness)
I can focus on the local problem instead of the whole process”, “(with liveness)
it is easy to change values and immediately see what happens”, “the program
shows you what it is doing”. There is also feedback to take into account when
developing in LRP: “The tool (LRP) seems good, but it is difficult to use in the
beginning”, “I need to get used to the LRP syntax”, “It (LRP) seems like a good
tool, however (...) it takes time to get used to it”.

6.9. Observations on Subject Behavior

Though live programming has previously been found to help in the con-
struction of programs, we discovered that it is not the case in this experiment.
From our observations of the subjects we see that one important negative influ-
ence is the interface between the language and the robot: the ROS middleware,
even though we ensured that the subjects are only minimally exposed to the
complexity of ROS.

We noted that there was a number of uncompleted steps, even when we tried
to make them accessible in this experiment. In particular, for 10 subjects in
the LRP version: 4 completed S1, 5 completed S2 and 5 completed S3. For
the SMACH version: 5 subjects completed S1, S2 and S3. The subjects that
completed the steps are not necessarily the same between LRP and SMACH.
Moreover, they are not necessarily the same between steps.

26



LRP Time SMACH Time
S1 S2 S3 Σ S1 S2 S3 Σ

Average 10 19.75 26.88 56.63 9.88 20 28.38 58.25
Median 10 20 28.50 58.5 10 20 30 59.5

σ 0 0.66 3.82 4.12 0.33 0 2.18 2.11

Table 11: Statistical results of the program writing experiment removing participants with
LRP experience. The table shows the time to complete every task and the sum of the times.
The average times are similar to the one presented in Table 7. In this case, LRP has the
advantage on tasks S2, S3 and the sum of the times, while SMACH has the advantage on task
S1. In this case, SMACH is more stable than LRP, with almost half the value of the standard
deviation.

LRP Time [0-1] SMACH Time [0-1]
Completed Steps 12 12

Average 0.923 0.955
Median 1 1

σ 0.114 0.067

Table 12: Normalized times of Table 8, while removing LRP expert subjects. The table
shows the statistical results of normalized time of completed steps only. Again, LRP has the
advantage over SMACH, however, the advantage is slower than Table 8. SMACH keeps being
more stable with, again, almost half the standard deviation.

Yet, we noted that in almost every unfinished step of the experiment, the
subject had a problem using ROS. All of these errors made by the subjects were
incidental and did not treat the construction of the behavior itself, i.e., building
a state machine, but the errors reflected how complicated it is to use the robot
API. In 21 of the 31 failed steps the subjects lost time due to problems with
ROS or the API between ROS and the system. Moreover, in our observations
we saw that subjects had more problems with ROS in the first task than the
second task, indicating a learning effect. In addition, we saw that they had more
problems in the first step, which is the easiest one in terms of programming, but
also the first step in which they are exposed to ROS without any outside help.

Lastly, ROS is an arguably complex middleware and ecosystem, and we
found that this difficulty prohibits the design of an experiment with bigger and
more complex programs. This is because we would need to teach more about
ROS and its API in Python and SMACH, and in LRP. One subject even com-
mented on this: “The [ROS API] should be explained earlier and separately
for each tool”. For this we would need more time for the experiment. How-
ever, given that the subjects already spent 4 hours on the experiment, it is not
straightforward how to increase the time of the experiment.

6.10. Conclusions on Program Writing

Like the previous experiment, the data of the experiment does not allow us to
reject the third and fourth null hypotheses H03 and H04. There is no difference

27



Treatment P value U value Difference?
Sum Score: LRP vs SMACH 0.6981 28 No
Sum Time: LRP vs SMACH 0.7476 28.5 No

Table 13: Mann-Whitney, two-tailed test for score and time of LRP vs SMACH for the
program writing experiment. These results do not take into account participants with LRP
experience. As in Table 9, there is no significant difference in score nor time: P > 0.05 for
both time and score.

Part. Is LRP better than
SMACH?

Would you use
SMACH?

Would you use
LRP?

1 5 3 5
2 4 2 2
3 4 3 4
4 3 5 4
5 4 3 4
6 2 4 3
7 4 3 3
8 3 4 4
9 4 1 4
10 2 4 3

Avg 3.5 3.2 3.6

Table 14: Subjects opinion of the program writing experiment. The worst is 1 and the best is
5. As in the experiment of program comprehension, the average results give again a preference
of LRP over SMACH.

between using LRP or SMACH to write programs for robotic behaviors, both
considering correctness and time taken.

We believe that negative impact of the robot API minimizes the benefits
of using live programming for this case. As in the previous experiment, the
qualitative results of the experiment reveal that the subjects think that it is
easier to write programs in LRP than in SMACH.

7. Discussion

In this section we explain in depth in the liveness features of LRP that should
help developers and why we believe robotic behavior development is a difficult
task, even when using live programming.

7.1. Why should LRP perform better?

There are several works stating the advantages of live programming [15, 16]
and how developers behave in these systems [16, 17, 18]. We designed LRP with
liveness features and conducted our own set of experiments, however we did not
find any statistical differences using live programming in robotic development,

28



even when we strongly believe that LRP has several features that should help
developers.

In particular, we list some of the unique features of LRP:

• Immediate connection between the source code and the running program
in the robot itself.

• Meaningful feedback via the LRP interface:

– Visualization of the running state in the context of the whole pro-
gram.

– Visualization of the value of all variables at all times.

• A UI to connect with ROS API to simplify the code written.

However, LRP has its own disadvantages as well:

• Learning curve: developers are not used to LRP nor liveness features. In
particular, LRP uses Pharo Smalltalk, a relatively obscure language for
developers.

• To use the ROS UI developers still need to know how to work with ROS
in LRP.

It is important to take into account the disadvantages of LRP in the experi-
ment. With the training material and the constant supervision of the researcher
in both of the experiments, we do not believe the learning curve of LRP has a
huge impact on the experiment. We believe the disadvantage of understanding
the robotic system strongly impacts the results.

Moreover, the disadvantage of understanding ROS does not only apply to
LRP, but also to SMACH. In fact, every API that works with ROS would have
this problem.

7.2. Why does LRP NOT perform better?

We claim that the particular disadvantages of LRP are not enough to obscure
the studied benefits of live programming. Why then does live programming not
have positive impact on our experiments?

The recent work of Kubelka et al. [19] offers insights on why live program-
ming does not work. They found that some developers do not use liveness
features where these features should help them.

While we were performing our experiments we noticed some similarities with
the work of Kubelka et al. Moreover, because of the specific setting of robotic
behaviors, we found even more behaviors that play a role in our negative results,
as described below.

29



Live programming does not help in all development tasks. Considering program
comprehension (Section 5), we already explained that live programming does
not help because subjects do not modify the program to understand it. The root
cause of this may be that only two of the subjects are accustomed to working in
a live programming environment. Hence most subjects do not change a program
in order to observe these changes in the behavior. However, the two subjects
with experience did not make any change either, so there may be other factors
at play as well.

Complex, low-level API. In the experiment of program writing (Section 6), we
explained how the impact of live programming may be reduced because of the
use of the ROS middleware. The ROS API is complex to use by itself.

In LRP we use a UI to make the connections easier with ROS. However,
developers still need to use these low-level connections to work with the robot.
This may have a negative impact in our results even when developers are used
to the ROS API.

Missing opportunities. We observed that the time of the results of the subjects
could be improved by better using the features of the live environment. In
other words, we spotted several missed opportunities where, if subjects used
live programming, they would improve their times to complete a task. This
may be happening because here also only two of the subjects are used to a live
programming environment.

The missed opportunities are especially noticeable in Step 3 of each task -
the most extensive and difficult one for the program writing experiment. Re-
member that this step includes the turning behavior, which exemplifies a case of
where live programming is said to be advantageous (as explained in Section 6.7).
We thought that subjects would skip over parts of the program to just test this
behavior, using the “jump” feature of LRP (explained in Section 2). Eventually,
subjects did use the feature, but just four of them, only after they had already
reached that part of the program through normal execution. This again reduces
the impact of liveness features. Remarkably, in SMACH we encountered a dif-
ferent strategy to save time testing this behavior. Three out of ten participants
set the turning state as the initial state of the machine to test it, minimizing the
time needed to test this particular behavior. Moreover, even when they did not
do that, the program was not time consuming enough to lead to a significant
performance impact.

On a positive note, the subjects did use the liveness features in Step 1
and Step 2 of the experiment in program writing, although on a smaller scale.
We believe these programs are not big enough to notice a real impact of live
programming, since code complexity is low and hence it is straightforward to
build a mental model of this code. In our experiment we could not make the
subjects build bigger programs because of time constraints. We did expect to
see a significant impact of liveness in the last step, but, as we explained before,
we encountered other obstacles.

30



7.3. How to improve our experiments?

To test our hypotheses about how live programming may help in practice
we need to tackle the previous considerations:

• People need to be trained to use the liveness features or they will miss
opportunities

• API’s elements outside the live programming system can have a strong
negative influence on the advantage of liveness. We need to address this.

8. Threats to Validity

As in any experiment, there are several threats to validity in this work. We
analyze four kinds of threats, as classified by Wohlin et al. [20].

Construct Validity. This considers the validity of the construction of the ex-
periment with regard to the obtained results and if the results really represent
what we want to measure. Our main concern in both experiments is whether
the tasks may benefit one system over the other by focusing on specific features.
To avoid this, we defined the tasks to not use specific features. Moreover, even
while the tasks are artificially created, they were designed to solve possible real
life problems with real applications for both experiments, such as delivering
objects.

For the experiment in program writing we gave the subjects a base program
to start each step (more on this in Section 6). This may benefit one system if the
task of understanding the base program is more difficult on one of the systems.
However, the results of the experiment in program understanding (explained in
Section 5) show us there is no such difference.

Internal Validity. This considers whether there are causal relations unknown to
the researchers that may affect the independent variables. Because the within-
subjects design of our experiments, the results are affected by a learning effect
between tasks. We minimize this threat by designing the tasks to be similar,
but not identical.

Also, time may introduce a bias since each session has a duration of ap-
proximately 4 hours. The subject may get tired, leading to worse results in the
second task for each experiment. To address this, while the subjects were per-
forming the tasks, we were supervising to check if they were performing worse
over time, which was not the case.

Moreover, in the program comprehension experiment, we can see this learn-
ing effect: subjects always took less time to complete the second task, while they
do not necessary improve their scores. However, as we randomize the subjects
participation in 4 work sessions, the impact of the learning effect is minimized.
We see this not only in our results (LRP and SMACH are similar), but also in
the score of the same tasks: subjects do not improve nor diminish their per-
formance between tasks. We believe they only get used to the dynamic of the
experiment.

31



Finally, we believe the ease of building a robot behavior is influenced by the
robot API. In this case, our opinion is that the ROS API factor minimizes the
effect of using live programming (as explained in Section 7.2).

External Validity. This considers whether the experiment can be replicated and
if the results can be generalized. Our most significant issues are the type of the
participants and their previous knowledge. We had only students in both of
the experiments. The reason for this is that robotics is a research area where a
large amount of work is done in universities with students of different areas of
knowledge and different degrees, i.e., exactly the type of users we used in our
study. We do not claim that this experiment could not be generalized. Even
while we lack another group of subjects, we believe the results of using students
is a good measurement of developers in the robotics world.

We are also aware of the problem of using students from our own campus.
The quantitative results of experiments do not show a problem with this, how-
ever, the qualitative results may be influenced from the origin of the subjects.
Even if the subjects are all from our campus, we claim the qualitative infor-
mation will be replicated even with subjects outside our campus because devel-
opers recognize the importance of software engineering tools when developing
programs in general. If we compare LRP against SMACH, LRP is a complete
IDE to develop robotic behaviors with liveness features, unlike SMACH that
provides an API and an external visualization.

The effect size is a threat to validity too. The lack of participants (10 per
experiment) may lead to a lack of generalization of our results. However, even
with the small amount of participants no difference is perceived, not even a
trend. We do not believe increasing the amount of participants will change our
conclusions. Live programing does not help with everything, nor everyone and
it would have problems with more complex API (as explained in Section 7.2).

Also, the complexity of the settings may introduce a problem to other re-
searches when trying to replicate or generalize these results. To minimize this,
we use a simulator of a real robot to remove the bias of working with real hard-
ware and to make the experiment easier to replicate by just using computers,
without the need of a real robot.

Reliability. This considers whether the researchers influenced the results. We
argue that if the experiment is conducted using the provided format, the results
will be similar, no matter the person conducting the experiment. To get the
results in both experiments is a straightforward process: in the first experiment
the subjects must answer a fixed questionnaire. In the second experiment they
must write a program that is scored by a given correctness table. Both ex-
periments do not need the presence of the researchers to measure the results.
However, a presence of the researcher is fundamental to understand the conclu-
sions of why live programming may not help.

32



9. Related Work

To the best of our knowledge, there has yet been no extensive report of a
study of the concrete advantages of live programming for understanding existing
code as well as program writing in a practical setting, such as robot behaviors.
Our related work is restricted to live programming systems that have presented
some form of user study and studies that consider code creation (but not code
understanding).

As part of the validation of Interstate Oney et al. [15] performed a com-
parative laboratory study where Interstate was tested against JavaScript. This
study had 20 participants and consisted of 2 tasks where participants needed to
make modifications and express new behaviors. There is however no description
of how the experiment was conducted, nor how the tasks were divided amongst
the participants. The conclusions of the experiment were that Interstate is
faster than JavaScript to make modifications to already existing programs and
to express new behaviors. There is however no report of a study that measures
the accuracy or speed of Interstate in understanding existing code.

The work of Wilcox et al. [16] revealed that continuous visual feedback in
direct manipulation of programs helps in the accuracy of debugging certain
tasks. They compare a live version of Forms/3 [21], against another version
with immediate feedback removed. In this experiment there are 29 subjects,
where half of them work on two different tasks using first the live version and
then the non-live version, while the other half do exactly the opposite. They
use two completely different tasks for this study, one to emphasize a graphical
program, and the other to emphasize a mathematical program. The degree of
improvement, as the authors conclude, depends on the type of problem, the
type of user, and the type of bug.

Kramer et al. [17] complemented the work of Wilcox et al. [16] by analyzing
code creation, comparing a live version against a non-live version of JavaScript.
In this work the authors analyzed 10 subjects where each subject should solve
three different tasks: one to parse an RSS feed, one to convert between two
object representations of a date, and one to implement Dijkstra’s algorithm.
The authors noticed that while live programming did not speed up the time to
complete a task, it did significantly decrease the time for fixing bugs introduced
while writing the task. They state that they found no indication that live
programming speeds up the process of code creation because of the small sample
size and/or that the data is overshadowed by inter-subject differences.

In addition to above small studies on whether live programming improves
the speed in development, there are three studies about how developers behave
in a live programming environment [16, 17, 18]. These show that developers
interact more with the live systems by performing more changes in programs
or by regularly checking the code for correctness. The rationale is that this is
because these systems promote more interaction between developers and their
programs. The recent work of Kubelka et al. [19] also shows how developers
behave in a live programming environment, including more practical tasks of
fixing bugs in a real-unknown system and extend a familiar system using liveness

33



features.
Lastly, Hundhausen and Brown [22] investigated the impact of continuous

feedback on novice programmers. To do this each subject was exposed to three
different systems: No feedback, self-select feedback and automatic feedback. In
the first system the subjects mentally simulated the program, in the second
the subject explicitly requested syntactic and semantic feedback, and the third
system the subject had feedback with every keystroke. The subjects completed
three tasks that involved creating, populating and iterating over arrays. The
authors found that even when subjects did significantly better in the systems
with feedback, there was no difference between both feedback treatments. Note
that liveness implies continuous and meaningful feedback [18] and that is one
of the conclusions of the work of Hundhausen and Brown [22]: “rather than
coming up with ways to facilitate liveness (in terms of feedback), programming
environment designers ought to be putting their efforts into designing effective
semantic feedback that benefits users”.

None of the previous experiments focus on the impact of live programming on
robotic behaviors nor on the use of a more complex system, except for the work
of Hancock [18] that focuses on teaching children to program robot behaviors.
However, Hancock only presents a study on how children behave using his system
in robotics, with no comparative analysis on the impact of live programming in
the development of robot behaviors. Moreover, the system that connects with
the robot is much less complex than using ROS, which may explain why this
work does not report on the problems we explain in Section 7.

10. Conclusion and Future Work

In this paper we reported on two controlled experiments that gauge whether,
in the practical settings of robot behaviors, code understanding and code writ-
ing in a live programming system is more accurate and faster than a non-live
setting. To the best of our knowledge, this is the first such in-depth study on the
advantages of live programming in a complex domain, such as robotic behaviors.

The quantitative results of the experiment show us that there is no significant
difference in program understanding nor in program creation, both considering
correctness and time taken. This novel result seems to contradict the previous
works in live programming.

From observations of the test subjects, we learned three important aspects
that reduces the impact of live programming on our experiments:

Complexity of robot API. The robotic API between the language and the
robot is a strong influencing factor in the result. Many issues in program con-
struction arose because of the complexity of the API, which negatively impacted
the distinction between the two systems under test.

Missing opportunities. We observed that the subjects do not always use the
live programming features to their fullest, leading to a notable amount of missed
opportunities for live programming to positively impact the results.

34



Limited scope of live programming. In particular in the experiment on pro-
gram comprehension, we noticed that live programming does not help because
subjects did not change the program. This limits the effects of live programming
to a simple run-time visual feedback of the program.

We believed that the contradictory results between our work and the related
work is due to the previous statements. We need to perform further studies
about every statement and measure its influence in the benefits of using live
programming.

Moreover, the qualitative results contradict our results: the subjects’ opin-
ions in the experiments are that it is easier to develop in a live programming
system. This apparent contradiction is remarkable and merits further study.

Our future work consists of further studying the performance of developers
using a live programming system in practical settings, specially in robotic behav-
iors. We wish to confirm our hypothesis that a complex API reduces the positive
impact of live programming, and investigate how we can reduce the amount of
missed opportunities of liveness features. After these studies are done, we will
have a more solid ground to design and conduct new experiments, with subjects
with several backgrounds, and finally asset the impact of live programming on
behavior-based robotics.

Moreover, liveness is said to help also in the task of debugging programs in
practical settings. Part of our future work is to test if live programming helps
to debug robotic behaviors written as state machines. However, we first need
to research the impact of a complex API in a live programming setting. Maybe
the complex API could also obscure, as with the experiments presented in this
work, the advantages of live programming in debugging programs.

Acknowledgments

We thank Lam Research for partially sponsoring the work presented in
this paper. Miguel Campusano is also funded by CONICYT-PCHA/Doctorado
Nacional/2015-21151534.

References

[1] S. L. Tanimoto, Viva: A visual language for image processing, Journal of
Visual Languages & Computing 1 (2) (1990) 127–139.

[2] M. Lötzsch, M. Risler, M. Jüngel, XABSL - A pragmatic approach to be-
havior engineering, in: Proceedings of IEEE/RSJ International Conference
of Intelligent Robots and Systems (IROS), Beijing, China, 2006, pp. 5124–
5129.

[3] A. Topalidou-Kyniazopoulou, N. I. Spanoudakis, M. G. Lagoudakis, A case
tool for robot behavior development, in: X. Chen, P. Stone, L. Sucar,
T. Zant (Eds.), RoboCup 2012: Robot Soccer World Cup XVI, Vol. 7500
of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2013,

35

http://dx.doi.org/10.1007/978-3-642-39250-4_21
http://dx.doi.org/10.1007/978-3-642-39250-4_21


pp. 225–236.
URL http://dx.doi.org/10.1007/978-3-642-39250-4_21

[4] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
A. Y. Ng, ROS: an open-source Robot Operating System, in: ICRA work-
shop on open source software, Vol. 3, 2009, p. 5.

[5] J. Bohren, S. Cousins, The smach high-level executive [ros news], IEEE
Robotics & Automation Magazine 17 (4) (2010) 18–20.

[6] M. Campusano, J. Fabry, Live robot programming: The language, its im-
plementation, and robot API independence, Science of Computer Program-
ming 133 (2016) 1 – 19.

[7] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. Kats,
E. Visser, G. Wachsmuth, DSL engineering: Designing, implementing and
using domain-specific languages, dslbook. org, 2013.

[8] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, M. Ziane, Robotml, a domain-
specific language to design, simulate and deploy robotic applications, in:
International Conference on Simulation, Modeling, and Programming for
Autonomous Robots, Springer, 2012, pp. 149–160.

[9] U. P. Schultz, D. J. Christensen, K. Stoy, A domain-specific language for
programming self-reconfigurable robots, in: Workshop on automatic pro-
gram generation for embedded systems (APGES), 2007, pp. 28–36.

[10] A. Nordmann, S. Wrede, J. Steil, Modeling of movement control archi-
tectures based on motion primitives using domain-specific languages, in:
Robotics and Automation (ICRA), 2015 IEEE International Conference
on, IEEE, 2015, pp. 5032–5039.

[11] A. P. Black, O. Nierstrasz, S. Ducasse, D. Pollet, Pharo by example, Lulu.
com, 2010.

[12] S. Bragagnolo, L. Fabresse, J. Laval, P. Estefó, N. Bouraqadi, Pharos: a ros
client for the pharo language, http://car.mines-douai.fr/category/pharos/
(2014).
URL http://car.mines-douai.fr/category/pharos/

[13] J. Fabry, M. Campusano, Live robot programming, in: A. Bazzan,
K. Pichara (Eds.), Advances in Artificial Intelligence – IBERAMIA 2014,
no. 8864 in LNCS, Springer-Verlag, 2014, pp. 445–456. doi:http://dx.

doi.org/10.1007/978-3-319-12027-0_36.

[14] A. Jedlitschka, D. Pfahl, Reporting guidelines for controlled experiments
in software engineering, in: Empirical Software Engineering, 2005. 2005
International Symposium on, IEEE, 2005, pp. 10–pp.

36

http://dx.doi.org/10.1007/978-3-642-39250-4_21
http://car.mines-douai.fr/category/pharos/
http://car.mines-douai.fr/category/pharos/
http://car.mines-douai.fr/category/pharos/
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-319-12027-0_36
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-319-12027-0_36


[15] S. Oney, B. Myers, J. Brandt, Interstate: a language and environment for
expressing interface behavior, in: Proceedings of the 27th annual ACM
symposium on User interface software and technology, ACM, 2014, pp.
263–272.

[16] E. Wilcox, J. W. Atwood, M. M. Burnett, J. J. Cadiz, C. R. Cook, Does
continuous visual feedback aid debugging in direct-manipulation program-
ming systems?, in: Proceedings of the ACM SIGCHI Conference on Human
factors in computing systems, ACM, 1997, pp. 258–265.

[17] J.-P. Kramer, J. Kurz, T. Karrer, J. Borchers, How live coding affects de-
velopers’ coding behavior, in: 2014 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), IEEE, 2014, pp. 5–8.

[18] C. M. Hancock, Real-time programming and the big ideas of computational
literacy, Ph.D. thesis, Massachusetts Institute of Technology (2003).

[19] J. Kubelka, R. Robbes, A. Bergel, The road to live programming: insights
from the practice, in: Proceedings of the 40th International Conference on
Software Engineering, ACM, 2018, pp. 1090–1101.

[20] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in software engineering, Springer Science & Business Me-
dia, 2012.

[21] M. Burnett, R. Walpole Djang, J. Reichwein, H. Gottfried, S. Yang,
Forms/3: A first-order visual language to explore the boundaries of the
spreadsheet paradigm, Journal of Functional Programming 11 (2001) 155–
206.

[22] C. D. Hundhausen, J. L. Brown, An experimental study of the impact of
visual semantic feedback on novice programming, Journal of Visual Lan-
guages & Computing 18 (6) (2007) 537–559.

37


	1 Introduction
	2 Live Robot Programming
	3 Baseline: SMACH
	4 Overall Experimental Design
	4.1 Goals
	4.2 Dependent and Independent Variables
	4.3 Baseline
	4.4 Experiment Design
	4.5 Participants
	4.6 Task Setup
	4.7 Work Session

	5 Controlled Experiment: Program Comprehension
	5.1 Goal
	5.2 Experiment Design
	5.3 Pilot Study
	5.4 On Reducing Biases
	5.5 Work Sessions
	5.6 Warm-up Phase
	5.7 Evaluation phase
	5.8 Results
	5.8.1 Quantitative Results
	5.8.2 Quantitative results: Participant with no LRP Experience
	5.8.3 Qualitative Results

	5.9 Observations on Subject Behavior
	5.10 Conclusions on Program Comprehension

	6 Controlled Experiment: Program Writing
	6.1 Goal
	6.2 Tasks to Evaluate
	6.3 Pilot Study
	6.4 Reducing Bias
	6.4.1 Reducing bias of used features
	6.4.2 Reducing different starting point bias

	6.5 Work Sessions
	6.6 Warm-up phase
	6.7 Evaluation phase
	6.8 Results
	6.8.1 Quantitative Analysis
	6.8.2 Quantitative results: participants with no LRP Experience
	6.8.3 Qualitative Analysis

	6.9 Observations on Subject Behavior
	6.10 Conclusions on Program Writing

	7 Discussion
	7.1 Why should LRP perform better?
	7.2 Why does LRP NOT perform better?
	7.3 How to improve our experiments?

	8 Threats to Validity
	9 Related Work
	10 Conclusion and Future Work

